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I N T R O D U C T I O N

In about 17 years ago writing an operating system’s kernel was kind
of a dream for me. Before 2 years of that time I just started my jour-
ney with the wonderful world of computer science through learning
programming for web which made me curios about the different as-
pects of computers and of course one of the most interesting of those
aspects is operating systems. At that time I wasn’t technically ready
yet to write an operating system kernel, so, a number of experiments
to achieve that goal failed. After these trials, many years passed, I
learned a lot through these years and tackled a number of other sys-
tem software (such as compilers, virtual machines and assemblers) to
learn how they work and even implemented some too simple versions
of them to make sure that I’ve understand their concepts. In 2017

I asked myself, why don’t I implement a simple operating system
kernel and achieve one of the oldest thing in my to-do list which was
a kind of dream for me? “Fine, but how to make it a useful project
for people?” that’s what I told myself as a response. Going through
this journey was interesting for me to learn more, but I also wanted to
make something that’s useful for someone other than me, and at that
moment the idea of this book was born. At that time, I was working
on my Master’s degree, so I didn’t have enough time to work on this
project and that’s made me to defer the work on it until the late of
2019 and after a lot of torture (sorry! dedication?) this book is finally
here.

In this book we are going to start a journey of creating a kernel I
called 539kernel which is a really simple x86 32-bit operating system
kernel that supports multitasking, paging and has its own filesystem.
I wrote 539kernel for this book and made it as simple as possible, so,
anyone would like to learn about operating system kernels can use
539kernel to start. Due to that, some of you may notice that some part
of 539kernel code is written in a naive way, while writing 539kernel
I focused on the readability and easiness of the code instead of the
efficiency. Through this journey your are going to learn a lot about the
basics of operating systems, their kernels and of course the platform
that is going to run 539kernel that we will create together, I mean by
the platform the processors that use x86 architecture. For those who
don’t know, an operating system kernel is the core of any operating
system and its job is managing the computer hardware and resources,
distribute these resources for the running programs and provide many
services for those programs to make it easy for them the work with
these resources and hardware.
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This book requires a knowledge in C programming language, you
know; the basics, its syntax, defining variable and functions, pointers
and so on, you don’t need to be a master on C’s libraries for example.
The compiler used to create and test 539kernel is GNU GCC 7.5. Also,
assembly programming language will be used, but the book doesn’t
require a knowledge in this language, every aspect you need to learn
about x86 assembly in order to create 539kernel will be explained in
this book. We will use NASM assembler for our assembly code and we
will use GNU Make to build our kernel, also, QEMU or Bochs will be
used as an emulator to test our work through this journey. All these
three tools will be discussed in chapter 1 but you need to set them
up in your machine. The full source code of 539kernel is available
in GitHub (https://github.com/MaaSTaaR/539kernel), there are two
directories in the root directory, src/ is one that contains the last
version of 539kernel, that is, when you finish this book, the code
that you will get will be same as the one in src/. The directory
evolution_by_versions/ contains the version of 539kernel while it’s
under development through the different chapters in this book. Finally,
I hope that you enjoy reading this book and I would be more than
happy to hear your feedback and to help me in spreading this book
which is available freely in (http://539kernel.com).

acknowledgment

I would like to thank Dr. Hussain Almohri 1 for his kind acceptance to
read this book before its release and for his encouragement, feedback
and discussions that really helped me. Also, I would like to thank
my friends Anas Nayfah, Ahmad Yassen, DJ., Naser Alajmi and my
dearest niece Eylaf for their kind support.

Mohammed Q. Hussain (mqh@539kernel.com)
16 November 2022

Kuwait

1 https://almohri.io/

https://github.com/MaaSTaaR/539kernel
http://539kernel.com
mailto:mqh@539kernel.com
https://almohri.io/


1
C H A P T E R 1 : L E T ’ S S TA RT W I T H T H E B O O T L O A D E R

1.1 introduction

The first piece to start with when writing an operating system’s kernel
is the boot loader which is the code that is responsible for loading the
main kernel from the disk to the main memory so the kernel can be
executed. Before getting started in the details of the boot loader and
all other parts of the kernel, we need to learn a little bit about the
tools (e.g. compilers and programming languages) that we will use
in our journey of creating a kernel. In this chapter, we start with an
overview on the tools and their basics and then we start in writing a
boot loader.

1.2 x86 assembly language overview

To build a boot loader, we need to use assembly language, also, there
are some parts of an operating system kernel that cannot be written in
a high-level language and assembly language should be used instead
as you will see later in this book, therefore, a basic knowledge of
the target architecture assembly is required, in our case, the target
architecture of our kernel is x86.

The program that takes a source code which is written in assembly
language and transforms this code to the machine language is known
as assembler 1. There are many assemblers available for x86 but the one
that we are going to use is Netwide Assembler (NASM). However, the
concepts of x86 assembly are the same, they are tight to the architecture
itself, also the instructions are the same, so if you grasp the basics it
will be easy to use any other assembler 2 even if it uses other syntax
than NASM. Don’t forget that the assembler is just a tool that helps
us to generate an executable x86 machine code out of an assembly
code, so, any suitable assembler that we use to reach our goal will be
enough.

1 While the program that transforms the source code which is written in high-level
language such as C to machine code is known as compiler.

2 Another popular open-source assembler is GNU Assembler (GAS). One of main
differences between NASM and GAS that the first uses Intel’s syntax while the
second uses AT&T syntax.
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1.2 x86 assembly language overview 8

In this section I don’t aim to examine the details of x86 or NASM,
you can consider this section as a quick start on both x86 and NASM,
the basics will be presented to make you familiar with x86 assembly
language, more advanced concepts will be presented later when we
need them. If you are interested in x86 assembly for its own sake,
there are multiple online resources and books that explain it in details.

1.2.1 Registers

In any processor architecture, and x86 is not an exception, a register
is a small memory inside the processor’s chip. Like any other type
of memories (e.g. RAM), we can store data inside a register and we
can read data from it, the registers are too small and too fast. The
processor architecture provides us with multiple registers. In x86

there are two types of registers: general purpose registers and special
purpose registers. In general purpose registers we can store any kind
of data we want, while the special purpose registers are provided
by the architecture for some specific purposes, we will encounter the
second type later in our journey of creating 539kernel.

x86 provides us with eight general purpose registers and to use
them in order to read from or write to them we refer to them by their
names in assembly code. The names of these registers are: EAX, EBX,
ECX, EDX, ESI, EDI, EBP, and ESP. While the registers ESI, EDI, EBP and
ESP are considered as general purpose registers in x86 architecture 3,
we will see later that they store some important data in some cases
and it’s better to use them carefully if we are forced to.

The size of each one of x86’s general purpose registers is 32 bits (4
bytes) and due to that, they are available only on x86 processors that
supports 32-bit architecture 4 such as Pentium 4 for instance. These
32-bit registers are not available on x86 processors that support only
16-bit architecture or lower, so, for example, you can’t use the register
EAX in Intel 8086 because it is a 16-bit x86 processor and not 32-bit.

In old days, when 16-bit x86 processors were dominant, assembly
programmers used the registers AX, BX, CX and DX and each one of
them is of size 16 bits (2 bytes), but when 32-bit x86 processors came,
these registers have been extended to have the size 32-bit and their
names were changed to EAX, EBX, ECX and EDX. The first letter E of the
new names means extended. However, the old names are still usable in
32-bit x86 processors and they are used to access and manipulate the
first 16 bits of the corresponding register, for instance, to access the
first 16 bits of the register EAX, the name AX can be used. Furthermore,
the first 16 bits of these registers can be divided into two parts and
each one of them is of size 8 bits (1 bytes) and has its own name that

3 According to Intel’s manual.
4 Also they are available on 64-bit x86 CPUs such as Core i7 for instance.



1.2 x86 assembly language overview 9

Figure 1: How the Registers EAX, EBX, ECX and EDX are Divided in x86

can be referred to in the assembly code. The first 8 bits of the register
are called the low bits, while the second 8 bits are called the high bits.

Let’s take one of these register as an example:AX register is a 16-bit

register which is a part of the bigger 32-bit EAX register in 32-bit

architecture. AX 5 is divided into two more parts, AL for the low 8 bits
as the second letter of the name indicates and AH for the high 8 bits as
the second letter of the name indicates. The same division holds true
for the registers BX, CX and DX, figure 1 illustrates that division.

1.2.2 Instruction Set

The processor’s architecture provides the programmer with a bunch of
instructions that can be used in assembly code. Processor’s instructions
resemble functions 6 in a high-level languages which are provided
by the libraries, in our case, we can consider the processor as the
ultimate library for the assembly code. As with functions in high-level
programming languages, each instruction has a name and performs
a specific job, also, it can take parameters which are called operands.
Depending on the instruction itself, the operands can be a static value
(e.g. a number), a register name that the instruction is going to fetch
the stored value of it to be used or even a memory location.

The assembly language is really simple. An assembly code is simply
a sequence of instructions which will be executed sequentially. The
following is an example of assembly code, don’t worry about its
functionality right now, you will understand what it does eventually.

1 mov ah, 0Eh

2 mov al, ’s’

3 int 10h

As you can see, each line starts with an instruction which is pro-
vided to us by x86 architecture, in the first two lines we use an
instruction named mov and as you can see, this instruction receives

5 Or in other words for 32-bit architecture: The first 16 bits of EAX.
6 Or a procedure for people who work with Algol-like programming languages.
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two operands which are separated by a comma. In the current usage
of this instruction we can see that the first operand is a register name
while the second operand is a static value. The third line uses another
instruction named int which receives one operand. When this code
is running, it will be executed by the processor sequentially, starting
from the first line until it finishes in the last line.

If you are interested on the available instructions on x86, there is
a four-volumes manual named “Intel® 64 and IA-32 architectures
software developer’s manual” provided by Intel that explains each
instruction in details 7.

Assigning Values with mov

You can imagine a register as a variable in high-level languages. We
can assign values to a variable, we can change its old value and we
can copy its value to another variable. In assembly language, these
operations can be performed by the instruction mov which takes the
value of the second operand and stores it in the first operand. You
have seen in the previous examples the following two lines that use
mov instruction.

1 mov ah, 0Eh

2 mov al, ’s’

Now you can tell that the first line copies the value 0Eh to the
register ah, and the second line copies the character s to the register
al. The single quotation is used in NASM to represent strings or
characters and that’s why we have used it in the second line, based
on that, you may noticed that the value 0Eh is not surrounded by a
single quotation though it contains characters, in fact, this value isn’t
a string, it is a number that is represented by hexadecimal numbering
system and due to that the character h was put in the end of that
value, that is, putting h in the end of 0E tells NASM that this value is
a hexadecimal number, the equivalent number of 0E in the decimal
numbering system, which we humans are using, is 14, that is 0E and
14 are the exactly the same, but they are represented in two different
numbering system8.

1.2.3 NASM

Netwide Assembler (NASM) is an open-source assembler for x86

architecture which uses Intel’s syntax of assembly language, the other
well-known syntax for assembly language is AT&T syntax and, of
course, there are some differences between the two, the first syntax
is used in the official manuals of Intel. NASM can be used through

7 https://software.intel.com/en-us/articles/intel-sdm

8 Numbering systems will be discussed in more details later.

https://software.intel.com/en-us/articles/intel-sdm


1.2 x86 assembly language overview 11

command line to assemble 9 x86 assembly code and generate the
corresponding machine code. The basic usage of NASM command is
the following.

1 nasm -f <format> <filename> [-o <output>]

The argument format decides the binary format of the generated
machine code, the binary format will be discussed in more details in a
moment. The second argument is the filename of the assembly file
that we would like to assemble, and the last option and argument are
optional, we use them if we want to specify a specific name for the
generated binary file, the default name will be same as the filename
with a different extension.

Binary Format

A binary format is basically a specification which gives a blueprint of
how a binary file is organized, in other words, it describes how a
binary file is structured, in general there are multiple parts in a binary
file and a binary format can be used format them, the machine code is
one part of a binary file parts. Note that each executable file uses some
binary format to organize its content and to make a specific operating
system understands its content. There is no difference between the
programming languages in the matter of the binary format 10 that
will be used in the last output of the compiling process, for example
in Linux, if we create a software either by C, Rust or assembly, the
last executable result will be a binary file that is formatted by using a
binary format known as Executable and Linkable Format (ELF) which is
the default in Linux. There are many other binary formats, Mach-O
is one example which is used by Mach-based 11, another example is
Portable Executable (PE) which is used by Microsoft Windows.

Each operating system knows its own binary format well, and
knows how a binary file that uses this format is structured, and how
to seek the binary file to find the machine code that should be loaded
into memory and executed by the processor. For example, when you
run an ELF executable file in GNU/Linux system, the Linux kernel
knows it is an ELF executable file and assumes that it is organized in
a specific way, by using the specification of ELF, Linux kernel will be
able to locate the machine code of the software inside the ELF file and
load it into memory to be ready for execution.

9 The process of transforming an assembly source code to machine code is known as
assembling.

10 Of course the programming language should be a compiled programming language
such as C and Rust and not an interpreted such as Python or a one that uses a virtual
machine such as Java.

11 Mach is an operating system’s kernel which is well-known for using microkernel
design. It has been started as a research effort in Carnegie Mellon University in
1985. Current Apple’s operating systems macOS and iOS are both based on an older
operating system known as NeXTSTEP which used Mach as its kernel,
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In any binary format, one major part of the binary file that uses
this format is the machine code that has been produced by compiling
or assembling some source code, the machine code is specific to a
processor architecture, for example, the machine code that has been
generated for x64

12 cannot run on x86. Because of that the binary
files are distributed according to the processor architecture which can
run on, for example, GNU/Linux users see the names of software
packages in the following format nasm_2.14-1_i386.deb, the part
i386 tells the users that the binary machine code of this package is
generated for i386 architecture, which is another name for x86 by the
way, that means this package cannot be used in a machine that uses
ARM processor such as Raspberry Pi for example.

Due to that, to distribute a binary file of the same software for
multiple processor’s architectures, a separate binary file should be
generated for each architecture, to solve this problem, a binary format
named FatELF was presented. In this binary format, the software
machine code of multiple processor architectures are gathered in one
binary file and the suitable machine code will be loaded and run
based on the type of the system’s processor. Naturally, the size of
the files that use such format will be bigger than the files that uses a
binary format that is oriented for one processor architecture. Due to
the bigger size, this type of binary formats is known as fat binary.

Getting back to the format argument of NASM, if our goal of using
assembly language is to produce an executable file for Linux for
example, we will use elf as a value for format argument. But we are
working with low-level kernel development, so our binary files should
be flat and the value of format should be bin to generate a flat binary
file which doesn’t use any specification, instead, in flat binary files, the
output is stored as is with no additional information or organization,
only the output machine language of our code. Using flat binary for
bootloader does make sense and that’s because the code which is
going to load 13 our binary file doesn’t understand any binary format
to interpret it and fetch the machine code out of it, instead, the content
of the binary file will be loaded to the memory as is.

1.3 gnu make

GNU Make is a build automation tool. Well, don’t let this fancy
term make you panic! the concept behind it is too simple. When we
create a kernel of an operating system 14 we are going to write some
assembly code and C code and both of them need to be assembled
and compiled (for the C code) to generate the machine code as binary
files out of them. With each time a modification is made in the source

12 The x86 architecture that supports 64-bit.
13 Which is BIOS as we will see later.
14 Or any software with any other compiled programming languages.
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code, you need to recompile (or reassemble) the code over and over
again through writing the same commands in the terminal in order
to generate the last binary output of your code. Beside the compiling
and recompiling steps, an important step needs to take place in order
to generate the last output, this operation is known as linking, usually
a programming project contains multiple source files that call each
other, compiling each one of these files is going to generate a separate
object file 15 for each one, in linking process these different object files
are linked with each other to generate one binary file out of these
multiple object files, this last binary file represents the program that
we are writing.

These operations which are needed to generate the last binary
file out of the source code is known as building process, which, as
mentioned earlier, involves executing multiple commands such as
compiling, assembling and linking. The building process a tedious job
and error-prone and to save our time (and ourselves from boredom
of course) we don’t want to write all these commands over and over
again in order to generate the last output, we need an alternative and
here where GNU Make 16 comes to the rescue, it automates the building
process by gathering all required commands in a text file known as
Makefile and once the user runs this file through the command make,
GNU Make is going to run these commands sequentially, furthermore,
it checks whether a code file is modified since the last building process
or not, if the case is that the file is not modified then it will not be
compiled again and the generated object file from the last building
process is used instead, which of course minimize the needed time to
finish the building process.

1.3.1 Makefile

A makefile is a text file that tells GNU Make what are the needed
steps to complete the building process of a specific source code. There
is a specific syntax that we should obey when writing makefile. A
number of rules may be defined, we can say that a makefile has a list
of rules that define how to create the executable file. Each rule has the
following format:

1 target: prerequisites

2 recipe

When we run the command make without specifying a defined
target name as an argument, GNU Make is going to start with the first
rule in the makefile only if the first rule’s target name doesn’t start
with dot, otherwise, the next rule will be considered. The name of a

15 An object file is a machine code of a source file and it is generated by the compiler.
The object file is not an executable file and in our case at least it is used to be linked
with other object files to generate the final executable file.

16 And any other building automation tool.
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target can be a general name or filename. Assume that we defined a
rule with the target name foo and it’s not the first rule in makefile,
we can tell GNU Make to execute this rule by running the command
make foo. One of well-known convention when writing a makefile is
to define a rule with target name clean that deletes all object files and
binaries that have been created in the last building process. We will
see after a short time the case where the name of a target is a filename
instead of general name.

The prerequisites part of a rule is what we can call the list of de-
pendencies, those dependencies can be either filenames (the C files of
the source code for instance) or other rules in the same makefile. For
GNU Make, to run the a specific rule successfully, the dependencies of
this rule should be fulfilled, if there is another rule in the dependen-
cies, it should be executed successfully first, if there is a filename in
the dependencies list and there is no rule that has the same filename
as a target name, then this file will be checked and used in the recipe
of the rule.

Each line in the recipe part should start with a tab and it contains
the commands that is going to run when the rule is being executed.
These commands are normal Linux commands, so in this part of a
rule we are going to write the compiling commands to compile the C
source files, assembling commands for the assembly source files and
linking command that links the generated object files. Any arbitrary
command can be used in the recipe as we will see later when we create
the makefile of 539kernel. Consider the following C source files, the
first one is file1.c, the second one is file2.h and the third one is
file2.c.

1 #include "file2.h"

2 int main()

3 {

4 func();

5 }

1 void func();

1 #include <stdio.h>

2 void func()

3 {

4 printf( "Hello World!" );

5 }

By using these three files, let’s take an example of a makefile with
filenames that have no rules with same target’s name.

1 build: file1.c file2.c

2 gcc -o ex_file file1.c file2.c

The target name of this rule is build, and since it is the first and
only rule in the makefile which its name doesn’t start with a dot, then
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it will be executed directly once the command make is issued, another
way to execute this rule is by mentioning its name explicitly as an
argument to make command as the following: make build.

The rule build depends on two C files, file1.c and file2.c, they
should be available on the same directory. The the recipe uses GNU
GCC to compile and link these two files and generate an executable
file named ex_file. The following is an example of a makefile that
has multiple rules.

1 build: file2.o file1.o

2 gcc -o ex_file file1.o file2.o

3 file1.o: file1.c

4 gcc -c file1.c

5 file2.o: file2.c file2.h

6 gcc -c file2.c file2.h

In this example, the first rule build depends on two object files
file1.o and file2.o. Before running the building process for the first
time, these two files will not be available in the source code directory
17, therefore, we have defined a rule for each one of them. The rule
file1.o is going to generate the object file file1.o and it depends on
file1.c, the object file will be simple generated by compiling file1.c.
The same happens with file2.o but this rule depends on two files
instead of only one.

GNU Make also supports variables which can simply be defined
as the following: foo = bar and they can be used in the rules as the
following: $(foo). Let’s now redefine the second makefile by using
the variables.

1 c_compiler = gcc

2 buid_dependencies = file1.o file2.o

3 file1_dependencies = file1.c

4 file2_dependencies = file2.c file2.h

5 bin_filename = ex_file

6 build: $(buid_dependencies)

7 $(c_compiler) -o $(bin_filename) $(buid_dependencies)

8 file1.o: $(file1_dependencies)

9 gcc -c $(file1_dependencies)

10 file2.o: $(file2_dependencies)

11 gcc -c $(file2_dependencies)

1.4 the emulators

While developing an operating system kernel, for sure, you will need
to run that kernel to test your code frequently. That’s of course can
be done by writing the image of the kernel on a bootable device and

17 Since they are a result of one step of the building process which is the compiling step
that has not been performed yet.
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reboot you machine over and over again in order to run your kernel.
Obviously, this way isn’t practical and needs a lot of chore work.
Moreover, when a bug shows up, it will be really hard to debug your
code by using this way. An alternative better way is to use an emulator
to run your kernel every time you need to test it.

An emulator is a software that acts like a full computer and by using
it you can run any code that require to run on a bare metal hardware.
Also, by using an emulator, everything will be virtual, for example,
you can create a virtual hard disk (that is, not real) that can be used
by your kernel, this virtual hard disk will be a normal file in you host
system, so, if anything goes wrong in your code you will not lose your
data in your main system. Furthermore, an emulator can provide you
with a debugger which will make your life a lot easier when you need
to debug your code.

There are two options for the emulator, QEMU 18 and Bochs 19.
Both of them are open source and both of them provides us with a
way to run a debugger. Personally, I liked Bochs’ debugger better
since it provides an easy GUI that saves a lot of time. QEMU on the
other hand, gives that user the ability to use GNU Debugger through
command line. Running a kernel image is simple in QEMU, the
following command performs that.

1 qemu-system-x86_64 kernel.img

Where kernel.img is the binary file of the kernel and the bootloader.
You will see later in 539kernel’s Makefile that the option -s is used
with QEMU, it can be safely removed but it is used to make GNU
debugger able to connect to QEMU in order to start a debugging
session. Of course you can find a lot more about QEMU in its official
documentation 20.

To run your kernel by using Bochs, you need to create a configura-
tion text file named bochsrc. Each time you run Bochs it will use this
configuration file which tells Bochs the specifications of the virtual
machine that will be created, these specifications are something about
the virtual processors, their number, their available feature, the num-
ber of available virtual disks, their options, the path of their files and
so on. Also, whether the debugger of Bochs and its GUI is enabled or
not are decided through this configuration file. This configuration can
be easily created or edited by using a command line interface through
running the command bochs with no arguments. After creating the
file you can use the option -f bochsrc where bochsrc is the filename
of the configuration file to run your kernel directly with no question
from Bochs about what to do.

18 https://www.qemu.org/

19 https://bochs.sourceforge.io/

20 https://www.qemu.org/docs/master/

https://www.qemu.org/
https://bochs.sourceforge.io/
https://www.qemu.org/docs/master/
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1.5 writing the boot loader

When a computer powers on, a piece of code named bootloader is
loaded and takes the control of the computer. Usually, the goal of
the bootloader is loading the kernel of an operating system from the
disk to the main memory and gives the kernel the control over the
computer. The firmware of a computer is the program which loads the
bootloader, in IBM-compatible computers the name of this firmware
is BIOS (Basic Input/Output System) 21.

There is a place in the hard disk called boot sector, it is the first
sector of a hard disk 22, BIOS loads the content of the boot sector as a
first step of running the operating system. Loading the boot sector’s
content means that BIOS reads the content from hard disk and loads
it into the main memory (RAM). This loaded content from the boot
sector should be the bootloader, and once its loaded into the main
memory, the processor will be able to execute it as any other code
that we use in our computers. So, the last step performed by BIOS in
booting process is giving the control to the bootloader to do whatever
it wants.

Before getting started in writing 539kernel, we need to write the
bootloader that is going to load 539kernel from the disk. In IBM-
compatible PCs that uses BIOS to perform the booting process, the
size of the bootloader is limited to 512 bytes and due to this limited
size and the need of using low-level services, the bootloader is usually
written in assembly language, also, because of this limited size, we
cannot depend on BIOS to load 539kernel instead of the bootloader
and that’s because a kernel is usually bigger than 512 bytes, therefore,
a small bootloader is loaded by BIOS in order to load the bigger piece
of code which is the kernel. The reason of this limited size of the
bootloader is because of the size of a sector in the hard disk itself.
Each sector in the hard disk has the size of 512 bytes and as we have
mentioned, BIOS is going to load the content of the first sector of hard
disk, the boot sector, which, of course, as any other sector its size is
512 bytes.

Beside the bootloader’s limited size, it is going to run on an x86
operating mode known as real mode 23, what we need to know about
that for now is that real mode is a 16-bit environment, so, even if
the working processor is a 64-bit processor, we can only use 16-bit

features of the processor, such as the registers of size 16 bits.
The booting process is too specific to the computer architecture

as we have seen and it may differs between one architecture and
another. Some readers, especially computer science students may

21 Before the advent of UEFI.
22 As we will see later, a magnetic hard disk has multiple stacked platters, each platter is

divided into multiple tracks and inside each track there are multiple sectors.
23 The concept of x86 operating modes and the real mode will be discussed in more

details later.
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Figure 2: (A) Shows a platter when we see it from the side. (B) Shows a
platter when we see it from top/down.

Figure 3: Shows how the parts of a hard disk are assembled together.

notice that the academic textbooks of operating systems don’t mention
the bootloader or discuss it.

1.5.1 Hard Disk Structure

A hard disk consists of multiple platters which are stacked together
one above the other, have you ever seen a CD or a DVD? A platter has
exactly the same shape, refer to Figure 2. The both surfaces (top and
down) of a platter are covered by a magnetic layer which stores the
data. For each surface of a platter there is a read/write head on it, and
as you guessed, the role of this head is to read from a surface or write
to it, a head is attached to an arm. Those arms move horizontally,
back and forth, and because the other end of all of those arms are
attached to the same physical part, they will be moved back and forth
together to the same location at the same time. Figure 3 shows how
the platters, arms and read/write heads are assembled together.

A surface of a platter is divided into a number of tracks and each
track is divided into a number of sectors. In Figure 4 you can see how
tracks and sectors are organized on a surface, the gray circles that have
the same center (cocenteric) are the tracks, a track consists of a smaller
parts which called sectors. A sector is the smallest unit that holds data
in hard disks and as you know from our previous discussion, the first
sector in a hard disk is known as boot sector.
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Figure 4: Shows Tracks and Sectors on a platter’s surface.

When a command is sent to the hard disk to write some data on it
or read from it, at least two mechanical moves 24 are performed. The
first move is taken by the arms, they move back or forth in order to
be upon the track that contains the data we would like to read, this
operation is known as seek operation. So, seek time is the time needed
to put a specific track under a read/write head. After finishing the
seek operation, the read/write head will be on the right track but, also,
it will be on a random sector 25, to reach the sector that we would like
to read from (or write to) the platter rotates until the read/write head
becomes upon the required sector. The speed of rotation is measured
by a unit known as revolutions per minute (RPM) and the needed time
to reach the required sector is known as rotational latency. Finally, the
data will be transferred from the hard disk to the main memory, the
time needed to transfer a number of bits known as transfer time.

Let’s assume as an example a hard disk that has 3 platters, which
means it has 6 surfaces, arms and read/write head. When the oper-
ating system request from the hard disk to seek a specific track, for
instance track 3, all 6 heads will seek the track 3 and when the seek
operation ends, the 6 heads will point to the same physical position on
all 6 surfaces, that is, the top head of the first platter and the bottom
head of it will point to that same place, but the first one on the top
while the second is on the bottom, and so on for the other 4 remaining
heads, the collection of all these tracks that the heads point to at some
point of time is called a cylinder.

Now, based on what we know about how a hard disk works, can
we imagine what happens inside the hard disk when BIOS loads a
bootloader? First, the arms will seek the track number 0 26, that is, the
arms move back or forth until they reach the track 0, then the platter
rotates until the read/write head become upon the sector 0, finally,
the content of sector 0 is transferred to the main memory.

24 This fancy term mechanical moves means that some physical parts of hard disk moves
physically.

25 Not exactly random, can you tell why?
26 I didn’t mention that previously, but yes, the bootloader resides in track 0.



1.5 writing the boot loader 20

1.5.2 BIOS Services

We are in a journey of writing an operating system kernel, which
means that we are dealing with a little bit harsh environment! Do
you remember all libraries that we are lucky to have when developing
normal software (user-space software), well, none of them are available
right now! And they will not be available until we decide to make
them so and work hard to do that. Even the simple function printf

of C is not available.
But that’s fine, for our luck, in this environment, where there is too

little available for us to write our code, BIOS provides us with a bunch
of useful services that we can use in real mode, so, we can use these
services in our bootloader to get things done.

BIOS services are like a group of functions in high-level languages
that is provided by some library, each function does something useful
and we deal with those functions as black boxes, we don’t know
what’s inside these functions but we know what they do and how to
use them. So, basically, BIOS provides us a library of functions and
we are going to use some of these functions in our bootloader.

BIOS services are divided into categories, there are video services
category, disk services category, keyboard services category and so
on. Each category is identified by a unique number called interrupt
number. In high-level world, we witnessed the same concept but
with different mechanism, for example, C standard library provides
us with many services (functions) such as input/output functions,
string manipulation functions, mathematical functions and so on,
these functions are categorized and each category is label by the
library name, for example, all input/output functions can be found
in stdio.h and so on. In BIOS, for example, the category of video
services has the interrupt number 10h. As mentioned earlier, the letterh
after a number means that this number represented in hexadecimal
numbering system, or for short, a hexadecimal number. Here, 10h
doesn’t equal the decimal number 10. We already said that when a
hexadecimal number is mentioned we use h as a postfix, also, 0x 27

can be used as a prefix instead of h, so 10h and 0x10 are equivalents.
Inside each services category, there is a bunch of services, each one

can do a specific thing and they are identified by a number. Continuing
with C analogy, a service is a function labeled by a name (e.g. printf)
and this function reside in a library (e.g. stdio.h) which is same as
a category of services in BIOS. As we said, the interrupt number 10h
represents the category of video services, and the service of printing a
character on a screen (function) is represented by the number 0Eh.

Interrupts is a fundamental concept in x86 architecture. What we
need to know about them right now is that they are a way to call a
specific code which is assigned to the interrupt number and calling

27 C programming language, for instance, uses this way for hexadecimal numbers.
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an interrupt in assembly is really simple, the instruction int is used
as the following: int 10h. That’s it! We use the instruction int and
gives it the interrupt number that represent the code that we would
like to call as an operand. In this example, we are calling the code of
interrupt 10h which is, as we mentioned multiple time, the category
of BIOS video services. When the CPU executes this instruction, BIOS
will be called and based on the interrupt number it will know that we
want to use one of available video services, but which one exactly!

In the previous example, we actually didn’t tell BIOS which video
service we would like to use and to do that we need to specify service
number in ah register before calling the interrupt.

1 mov ah, 0Eh

2 int 10h

That’s it, all the BIOS services can be used in this exact way. First we
need to know what is the interrupt number that the service belongs
to, then, we need to know the number of the service itself, we put
the service number in the register ah then we call the interrupt by its
number by using int instruction.

The previous code calls the service of printing a character on a
screen, but is it complete yet? Actually no, we didn’t specify what
is the character that we would like to print. We need something like
parameters in high-level languages to pass additional information for
BIOS to be able to do its job. Well, lucky us! the registers are here to
the rescue.

When a BIOS service needs additional information, that is, param-
eters. It expects to find these information in a specific register. For
example, the service 0Eh in interrupt 10h expects to find the character
that the user wants to print in the register al, so, the register al is one
of service 0Eh parameters. The following code requests from BIOS to
print the character S on the screen:

1 mov ah, 0Eh

2 mov al, ’S’

3 int 10h

1.5.3 A Little Bit More of x86 Assembly and NASM

We need to learn a couple more things about x86 assembly to be able
to start. In NASM, each line in the source code has the following
format.

1 label: instruction operands

The label is optional, the operands depend on x86 instruction in
use, if it doesn’t get any operand then we don’t need to write them.
To write comments on NASM we begin with semi-colon and write
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whatever we like after it as a comment and the rest of the source line
will be considered as a part of the comment.

A label is a way to give an instruction or a group of instructions a
meaningful name, then we can use this name in other places in the
source code to refer to this instruction/group of instructions, we can
use labels for example to call this group of instructions or to get the
starting memory address of these instructions. Sometimes, we may
use labels to make the code more readable.

We can say that a label is something like the name of a function or
variable in C, as we know a variable name in C is a meaningful name
that represents the memory address of a location in the main memory
that contains the value of a variable, the same holds true for a function
name. Labels in NASM works in the same way, under the hood it
represents a memory address. The colon in label is also optional.

1 print_character_S_with_BIOS:

2 mov ah, 0Eh

3 mov al, ’S’

4 int 10h

You can see in the code above, we gave a meaningful name for the
bunch of instructions that prints the character S on the screen. After
defining this label in our source code, we can use it anywhere in the
same source code to refer to this bunch of instructions.

1 call_video_service int 10h

This is another example of labels. This time we eliminated the
optional colon in label’s name and the label here points to only one
instruction. Please note that extra whitespaces and new lines doesn’t
matter in NASM, so, the following is equivalent to the one above.

1 call_video_service

2 int 10h

Consider the following code, what do you think it does?

1 print_character_S_with_BIOS:

2 mov ah, 0Eh

3 mov al, ’S’

4

5 call_video_service:

6 int 10h

Still it prints S on the screen. Introducing labels in the source
code doesn’t change its flow, the code will be executed sequentially
whether we used the labels or not. The sequence of execution will not
be changed by merely using labels, if we need to change the sequence
of execution we need to use other methods than labels. You already
know one of these methods which is calling an interrupt. So, we can
say that labels are more general than a variable name or function name
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in C. A label is a human-readable name for a memory location which
can contain anything, code or data!

Jump and Return Unconditionally

Let’s start this section with a simple question. What happens when
we call a function in C? Consider the following C code.

1 main()

2 {

3 int result = sum( 5, 3 );

4

5 printf( "%d\n", result );

6 }

Here, the function main called a function named sum, this function
reside in a different region in memory and by calling it we are telling
the processor to go to this different region of memory and execute
what’s inside it, the function sum is going to do its job, and after
that, in some magical way, the processor is going to return to the
original memory region where we called sum from and proceed the
execution of the code that follows the calling of sum, in this case, the
printf function. How does the processor know where to return after
completing the execution of sum?

The function which call another is named caller while the function
which is called by the caller named callee, in the above C code, the
caller is the function main while the callee is the function sum.

a glance on a computer architecture When a program is
running, a copy of its machine code is loaded in the main memory,
this machine code is a sequence of instructions which are under-
standable by the processor, these instructions are executed by the
processor sequentially, that is, one after another in each cycle in the
processor, also, the data that the code being executed is dealing with
is stored in the same main memory. This architecture where both
code and data are stored in the same memory and the processor uses
this memory to read the instructions that should be executed, and
manipulate the data which is stored in the same memory is known
as von Neumann architecture. There is another well-known architecture
called Harvard architecture where the code and data are stored in two
different memories, x86 uses von Neumann architecture.

When a processor starts a new instruction cycle, it fetches the next in-
struction that should be executed from the main memory and executes
it 28. Each memory location in the main memory is represented and
referred to by a unique memory address, that means each instruction in
the machine code of a loaded program has a unique memory address,
consider the following hypothetical example of the memory addresses

28 The instruction cycle is also called fetch-decode-execute cycle.
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of each instruction in the previous C code, note that the memory
addresses in this example are by no means accurate.

1 100 main() {

2 110 int result = sum( 5, 3 );

3 120 printf( "%d\n", result );

4 130 }

5

6 250 int sum( int firstNumber, int secondNumber ) {

7 260 return firstNumber + secondNumber;

8 270 }

The number on the left is the hypothetical memory address of the
code line in the right, that means the function main starts from the
memory address 100 and so on. Also, we can see that the callee sum

resides in a far region of memory from the caller main.
Program Counter is a part of computer architecture which stores the

memory address for the instruction that will be executed in the next
instruction cycle of the processor. In x86, the program counter is a
register known as instruction pointer and its name is IP in 16-bit and
EIP in 32-bit.

When the above C code runs for the first time, the value of the
instruction pointer will be 100, that is, the memory address of the
starting point of main function. When the instruction cycle starts, it
reads the value of the instruction pointer register IP/EIP which is 100,
it fetches the instruction which is stored in the memory location 100

and executes it 29, then the memory address of the next instruction 110

will be stored in the instruction pointer register for the next instruction
cycle. When the processor finishes the execution of the instruction
of the memory location 110, this time, the value of IP/EIP will be
250 instead of 120 because, you know, we are calling the function sum

which resides in the memory location 250.
Each running program has a stack which is a region of the program’s

memory 30, that is, a place in the memory that belongs to the program
and can store data, we will examine the details of stack later, but what
is important for us now is the following, when another function is
called, in our case sum, the memory address of the next instruction
of the callee main is pushed 31 into the stack, so the memory address
120 will be pushed into the stack before calling sum, this address is
called return address. Now, assume that the processor is executing the
instruction in the memory location 270, that is, finishing the execution
of the callee sum, after that the processor will find the return address

29 For the simplicity of explanation, the details of decoding have been eliminated.
30 The stack as a region of memory (x86 stack) is not same as the data structure stack,

the former implements the latter.
31 Push means store something in a stack, this term is applicable for both x86 stack and

the data structure stack, as we have said previously, x86 stack is an implementation
of the stack data structure.
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which is 120 in the stack, get it and put it in the register IP/EIP for
the next instruction cycle 32. So, this is the answer of our original
question in the previous section “How does the processor know where
to return after completing the execution of sum?”.

the instructions call and ret The instruction call in as-
sembly works exactly in the same way that we have explained in the
previous section, it is used to call a code that resides in a given mem-
ory address. The instruction call pushes the return address into the
stack and to return to the caller, the callee should use the instruction
ret when it finishes. The instruction ret gets the return address from
the stack 33 and use it to resume the execution of the caller. Consider
the following example.

1 print_two_times:

2 call print_character_S_with_BIOS

3 call print_character_S_with_BIOS

4 ret

5

6 print_character_S_with_BIOS:

7 mov ah, 0Eh

8 mov al, ’S’

9 int 10h

10 ret

You can see here that we have used the code sample print_character_S_with_BIOS
to define something like C functions by using the instructions call

and ret. It should be obvious that the code of print_two_times prints
the character S two times, as we have said previously, a label repre-
sents a memory address and print_character_S_with_BIOS is a label,
the operand of call is the memory address of the code that we wish to
call, the instructions of print_character_S_with_BIOS will be executed
sequentially until the processor reaches the instruction ret, at this
point, the return address is obtained from the stack and the execution
of the caller is resumed.
call performs an unconditional jump, that means the processor

reaches to a call instruction, it will always call the callee, without any
condition, later in this chapter we will see an instruction that performs
a conditional jump, which only calls the callee when some condition is
satisfied, otherwise, the execution of the caller continues sequentially
with no flow change.

The One-Way Unconditional Jump

Like call, the instruction jmp jumps to the specified memory address,
but unlike call, it doesn’t store the return address in the stack which

32 By the way, this is, partially, the cause of buffer overflow bugs.
33 Actually it pops the value since we are talking about stack here.
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means ret cannot be used in the callee to resume the caller’s execution.
We use jmp when we want to jump to a code that we don’t need to
return from, jmp has the same functionality of goto statement in C.
Consider the following example.

1 print_character_S_with_BIOS:

2 mov ah, 0Eh

3 mov al, ’S’

4 jmp call_video_service

5

6 print_character_A_with_BIOS:

7 mov ah, 0Eh

8 mov al, ’A’

9

10 call_video_service:

11 int 10h

Can you guess what is the output of this code? it is S and the code
of the label print_character_A_with_BIOS will never be executed
because of the line jmp call_video_service. If we remove the line of
jmp from this code sample, A will be printed on the screen instead of
S. Another example which causes infinite loop.

1 infinite_loop:

2 jmp infinite_loop

Comparison and Conditional Jump

In x86 there is a special register called FLAGS register 34. It is the
status register which holds the current status of the processor. Each
usable bit of this register has its own purpose and name, for example,
the first bit (bit 0) of FLAGS register is known as Carry Flag (CF) and
the seventh bit (bit 6) is known as Zero Flag (ZF).

Many x86 instructions use FLAGS register to store their result on, one
of those instructions is cmp which can be used to compare two integers
which are passed to it as operands, when a comparison finishes, the
processor stores the its result in FLAGS register. The following line
compares the value which reside in the register al with 5: cmp al, 5.

Now, let’s say that we would like to jump to a piece of code only
if the value of al equals 5, otherwise, the code of the caller contin-
ues without jumping. There are multiple instructions that perform
conditional jump based on the result of cmp. One of these instructions
is je which means jump if equal, that is, if the two operands of the
cmp instruction equals each other, then jump to the specified code.
Another conditional jump instruction is jne which means jump if not
equal, there are other conditional jump instructions to handle the other

34 In 32-bit x86 processors its name is EFLAGS and in 64-bit its name is RFLAGS.
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cases. We can see that the conditional jump instructions have the same
functionality of if statement in C. Consider the following example.

1 main:

2 cmp al, 5

3 je the_value_equals_5

4 ; The rest of the code of ‘main‘ label

This example jumps to the code of the label the_value_equals_5 if
the value of the register al equals 5. In C, the above assembly example
will be something like the following.

1 main()

2 {

3 if ( register_al == 5 )

4 the_value_equals_5();

5

6 // The rest of the code

7 }

Like jmp, but unlike call, conditional jump instructions don’t push
the return address into the stack, which means the callee can’t use
ret to return and resume caller’s code, that is, the jump will be one
way jump. We can also imitate while loop by using conditional jump
instructions and cmp, the following example prints S five times by
looping over the same bunch of code.

1 mov bx, 5

2

3 loop_start:

4 cmp bx, 0

5 je loop_end

6

7 call print_character_S_with_BIOS

8

9 dec bx

10

11 jmp loop_start

12

13 loop_end:

14 ; The code after loop

You should be familiar with the most of the code of this sample,
first we assign the value 5 to the register bx 35, then we start the label
loop_start which the first thing it does is comparing the value of bx
with 0, when bx equals 0 the code jumps to the label loop_end which
contains the code after the loop, that is, it means that the loop ended.
When bx doesn’t equal 0 the label print_character_S_with_BIOS will

35 Can you tell why we used bx instead of ax? [Hint: review the code of
print_character_S_with_BIOS.]
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be called to print S and return to the caller loop_start, after that
the instruction dec is used to decrease 1 form its operand, that is
bx = bx - 1, finally, the label loop_start will be called again and the
code repeats until the value of bx reaches to 0. The equivalent code in
C is the following.

1 int bx = 5;

2

3 while ( bx != 0 )

4 {

5 print_character_S_with_BIOS();

6 bx--;

7 }

8

9 // The code after loop

Load String

It is well-known that 1 byte equals 8 bits. Moreover, there are two
size units in x86 other than a byte. The first one is known as a word
which is 16 bits, that is, 2 bytes, and the second one is known as
doubleword which is 32 bits, that is, 4 bytes. Some x86 instructions
have multiple variants to deal with these different size units, while
the functionality of an instruction is the same, the difference will be
in the size of the data that a variant of instruction deals with. For
example, the instruction lods has three variants lodsb which works a
byte, lodsw which works with a word and loadsd which works with
a doubleword.

To simplify the explanation, let’s consider lodsb which works with
a single byte, its functionality is too simple, it reads the value of
the register si which is interpreted as a memory address by the
instruction, then it transfers a byte from the content of that memory
address to the register al, finally, it increments the value of si by 1

byte. The same holds true for the other variants of lods, only the size
of the data, the used registers and the increment size are different, the
register which is used by lodsw is ax 36 and si is incremented by 2

bytes, while lodsd uses the register eax 37 and si is incremented by 4

bytes. 38

36 Because the size of ax is a word
37 Because the size of eax is a doubleword.
38 As an exercise, try to figure out why are we explaining the instruction lodsb in this

chapter, what is the relation between this instruction and the bootloader that we are
going to write? Hint: Review the code of print_character_S_with_BIOS and how to
print a character by using BIOS services. If you can’t figure the answer out don’t
worry, you will get it soon.
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NASM’s Pseudoinstructions

When you encounter the prefix 39 pseudo before a word, you should
know that it describes something fake, false or not real 40. NASM
provides us with a number of pseudoinstructions, that is, they are
not real x86 instructions, the processor doesn’t understand them and
they can’t be used in other assemblers 41, on the other hand, NASM
understands those instructions and can translate them to something
understandable by the processor. They are useful, and we are going
to use them to make the writing of the bootloader easier.

declaring initialized data The concept of declaring something
is well-known by the programmers, In C for example, when you declare
a function, you are announcing that this function exists, it is there, it
has a specific name and takes the declared number of parameters 42.
The same concept holds true when you declare a variable, you are
letting the rest of the code know that there exists a variable with a
specific name and type. When we declare a variable, without assigning
any value to it, we say that this variable is uninitialized, that is, no
initial value has been assigned to this variable when it was declared,
later on, a value will be assigned to the variable, but not as early of
its declaration. In contrast, a variable is initialized when a value is
assigned to it when it’s declared.

The pseudoinstructions db, dw, dd, dq, dt, ddq and do help us to
initialize a memory location with some data, and with using labels
when can mimic the concept of initialized variables in C. As an exam-
ple, let’s consider db which declares and initializes a byte of data, the
second letter of db means bytes.

1 db ’a’

The above example reserves a byte in the memory, this is the decla-
ration step, then the character a will be stored on this reserved byte of
the memory, which is the initialization step.

1 db ’a’, ’b’, ’c’

In the above example we have used comma to declare three bytes
and store the values a, b and c respectively on them, also, on memory

39 In linguistics, which is the science that studies languages, a prefix is a word (actually
a morpheme) that is attached in the beginning of another word and changes its
meaning, for example, in undo, un is a prefix.

40 For example, in algorithm design which is a branch of computer science, the term
pseudocode means a code that is written in a fake programming language. Another
example is the word pseudoscience: A statement is a pseudoscience when it is
claimed to be a scientific fact, but in reality it is not, that is, it doesn’t follow the
scientific method.

41 Unless, of course, they are provided in the other assembler as pseudoinstructions.
42 It is important to note that declaring a function in C differs from defining a function,

the following declares a function: int foo(); You can see that the code block (the
implementation) of foo is not a part of the declaration, once the code block of the
function is presented, we say this is the definition of the function.
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these values will be stored contiguously, that is, one after another, the
memory location (hence, the memory address) of the value b will be
right after the memory location of value a and the same rule applies
for c. Since a, b and c are of the same type, a character, we can write
the previous code as the following and it gives as the same result.

1 db ’abc’

Also, we can declare different types of data in the same source line,
given the above code, let’s say that we would like to store the number
0 after the character c, this can be achieved by simply using a comma.

1 db ’abc’, 0

Now, to make this data accessible from other parts of the code, we
can use a label to represent the starting memory address of this data.
Consider the following example, it defines the label our_variable,
after that, we can use this label to refer to the initialized data.

1 our_variable db ’abc’, 0

repeating with times To repeat some source line multiple
times, we can use the pseudoinstruction times which takes the num-
ber of repetitions as first operand and the instruction that we would
like to execute repeatedly as second operand. The following example
prints S five times on the screen.

1 times 5 call print_character_S_with_BIOS

Not only normal x86 instructions can be used with times as second
operand, also NASM’s pseudoinstructions can be used with times.
The following example reserves 100 bytes of the memory and fills
them with 0.

1 times 100 db 0

NASM’s Special Expressions

In programming languages, an expression is a part in the code that
evaluates a value, for example, x + 1 is an expression, also, x == 5 is
an expression. On the other hand, a statement is a part of the code that
performs some action, for example, in C, x = 15 * y; is a statement
that assigns the values of an expression to the variable x.

NASM has two special expressions, the first one is $ which points
to the beginning of the assembly position of the current source line. So,
one way of implementing infinite loop is the following: jmp $. The
second special expression is $$ which points to the beginning of the
current section of assembly code.



1.5 writing the boot loader 31

1.5.4 The Bootloader

As you have learned previously, the size of the bootloader should be
512 bytes, the firmware loads the bootloader in the memory address
07C0h, also, the firmware can only recognize the data in the first sector
as a bootloader when that data finishes with the magic code AA55h.
When 539kernel’s bootloader starts, it shows two messages for the
user, the first one is The Bootloader of 539kernel. and the second
one The kernel is loading..., after that, it is going to read the disk
to find 539kernel and load it to memory, after loading 539kernel to
memory, the bootloader gives the control to the kernel by jumping to
the start code of the kernel.

Right now, 539kernel doesn’t exist 43, we haven’t write it yet, so, in
our current stage, instead of loading 539kernel, the bootloader is go-
ing to load a code that prints Hello World!, From Simple Assembly

539kernel!. In this section, we are going to write two assembly files,
the bootloader bootstrap.asm and simple_kernel.asm which is the
temporary replacement of 539kernel, also, Makefile which compiles
the source code of the assembly files will be presented in this section.

Implementing the Bootloader

Till now, you have learned enough to understand the most of the
bootloader that we are going to implement, however, some details
have not been explained in this chapter and have been delayed to be
explained later. The first couple lines of the bootloader is an example
of concepts that have not been explained, our bootloader source code
starts with the following.

1 start:

2 mov ax, 07C0h

3 mov ds, ax

First, we define a label named start, there is no practical reason to
define this label (such as jump to it for example), the only reason of
defining it, is the readability of the code, when someone else tries to
read the code, it should be obvious for her that start is the starting
point of executing the bootloader.

The job of next two lines is obvious, we are moving the hexadecimal
number 07C0 to the register ax then we move the same value to the
register ds through ax, note that we can’t store the value 07C0 directly
in ds by using mov as the following: mov ds, 07C0h, due to that, we
have put the value on ax and then moved it to ds, so, our goal was
to set the value 07C0 in the register ds, this restriction of not being
able to store to ds directly is something that the processor architecture
decides. Now, you may ask why we want the value 07C0 in the register

43 Actually it does! But you know what I mean.
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ds, this is a story for another chapter, just take these two lines on faith,
and you will learn later the purpose of them. Let’s continue.

1 mov si, title_string

2 call print_string

3

4 mov si, message_string

5 call print_string

This block of code prints the two messages that we mentioned
earlier, both of them are represented by a separate label title_string
and message_string, you can see that we are calling the code of a label
print_string that we didn’t define yet, its name indicates that it prints
a string of characters, and you can infer that the function print_string

receives the memory address of the string that we would like to print
as a parameter in the register si, the implementation of print_string
will be examined in a minute.

1 call load_kernel_from_disk

2 jmp 0900h:0000

These two lines represent the most important part of any bootloader,
first a function named load_kernel_from_disk is called, we are going
to define this function in a moment, as you can see from its name, it is
going to load the code of the kernel from disk into the main memory
and this is the first step that makes the kernel able to take the control
over the system. When this function finishes its job and returns, a
jump is performed to the memory address 0900h:000, but before
discussing the purpose of the second line let’s define the function
load_kernel_from_disk.

1 load_kernel_from_disk:

2 mov ax, 0900h

3 mov es, ax

This couple of lines, also, should be taken on faith. You can see, we
are setting the value 0900h on the register es. Let’s move to the most
important part of this function.

1 mov ah, 02h

2 mov al, 01h

3 mov ch, 0h

4 mov cl, 02h

5 mov dh, 0h

6 mov dl, 80h

7 mov bx, 0h

8 int 13h

9

10 jc kernel_load_error

11

12 ret
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This block of code loads the kernel from the disk into the memory
and to do that it uses the BIOS Service 13h which provides services
that are related to hard disks. The service number which is 02h is
specified on the register ah, this service reads sectors from the hard
disk and loads them into the memory. The value of the register al is
the number of sectors that we would like to read, in our case, because
the size of our temporary kernel simple_kernel.asm doesn’t exceed
512 bytes we read only 1 sector. Before discussing the rest of passed
values to the BIOS service, we need to mentioned that our kernel will
be stored right after the bootloader on the hard disk, and based on this
fact we can set the correct values for the rest registers which represent
the disk location of the content that we would like to load.

The value of register ch is the number of the track that we would
like to read from, in our case, it is the track 0. The value of the register
cl is the sector number that we would like to read its content, in our
case, it is the second sector. The value of the register dh is the head
number. The value of dl specifies which the type of disk that we
would like to read from, the value 0h in this register means that we
would like to read the sector from a floppy disk, while the value 80h

means we would like to read from the hard disk #0 and 81h for hard
disk #1, in our case, the kernel is stored in the hard disk #0, so, the
value of dl should be 80h. Finally, the value of the register bx is the
memory address that the content will be loaded into, in our case, we
are reading one sector, and its content will be stored on the memory
address 0h 44.

When the content is loaded successfully, the BIOS Service 13h:02h

is going to set the carry flag 45 to 0, otherwise, it sets the carry flag
to 1 and stores the error code in register ax, the instruction jc is a
conditional jump instruction that jumps when CF = 1, that is, when
the value of the carry flag is 1. That means our bootloader is going
to jump to the label kernel_load_error when the kernel isn’t loaded
correctly.

If the kernel is loaded correctly, the function load_kernel_from_disk

returns by using the instruction ret which makes the processor to
resume the main code of our bootloader and executes that instruction
which is after call load_kernel_from_disk, this next instruction is
jmp 0900h:0000 which gives the control to the kernel by jumping to
its starting point, that is, the memory location where we loaded our
kernel in. In this time, the operand of jmp is an explicit memory
address 0900h:0000, it has two parts, the first part is the one before
the colon, you can see that it is the same value that we have loaded in
the register es in the beginning of load_kernel_from_disk function.
The second part of the memory address is the one after the colon,

44 Not exactly the memory address 0h, in fact, it will be loaded in offset 0 inside a
segment that starts at 0900h. Don’t worry, these details will be examined later in the
next chapter 2.

45 Which is part of FLAGS register as we mentioned earlier
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it is 0h 46 which is the offset that we have specified in the register
bx in load_kernel_from_disk before calling 02h:13h, the both parts
combined represent the memory address that we have loaded our
kernel into and the details of the two parts of this memory address
will be discussed in chapter 2.

Now we have finished the basic code of the bootloader, we can
start defining that labels that we have used before in its code. We
start with the label kernel_load_error which simply prints an error
message, the function print_string is used to perform that, after
printing the message, nothing can be done, so, kernel_load_error
enters an infinite loop.

1 kernel_load_error:

2 mov si, load_error_string

3 call print_string

4

5 jmp $

Our previous samples of using the BIOS Service 0Eh:10h were
printing only one character, in real world, we need to print a string of
characters and that’s what the function print_string exactly does, it
takes the memory address which is stored in the register si and prints
the character which is stored in this memory location, then it moves
to the next memory address and prints the character which is stored
in this next memory location and so on, that is, print_string prints a
string character by character. So, you may ask, how print_string can
know when should it stop?

A string in C programming language, as in our situation, is an array
of characters, and the same problem of “where does a string end”
is encountered in C programming language, to solve the problem,
each string in C programming language ends with a special character
named null character and represented by the symbol \0 in C 47, so,
you can handle any string in C character by character and once you
encounter the null character \0 that means you have reached the
end of that string. We are going to use the same mechanism in our
print_string function to recognize the end of a string by putting the
value 0 as a marker at the end of the it. By using this way, we can
now use the service 0Eh:10h to print any string, character by character,
through a loop and once we encounter the value 0 we can stop the
printing.

1 print_string:

2 mov ah, 0Eh

3

4 print_char:

5 lodsb

46 Here, 0h is equivalent to 0000.
47 This type of strings named null-terminated strings.
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6

7 cmp al, 0

8 je printing_finished

9

10 int 10h

11

12 jmp print_char

13

14 printing_finished:

15 mov al, 10d ; Print new line

16 int 10h

17

18 ; Reading current cursor position

19 mov ah, 03h

20 mov bh, 0

21 int 10h

22

23 ; Move the cursor to the beginning

24 mov ah, 02h

25 mov dl, 0

26 int 10h

27

28 ret

When print_string starts, the BIOS service number 0Eh is loaded
in ah, this operation needs to execute just one time for each call of
print_string, so it is not a part of the next label print_char which is
also a part of print_string and it will be executed right after moving
0Eh to ah.

As you can remember, that parameter of print_string is the mem-
ory address which contains the beginning of the string that we would
like to print, this parameter is passed to print_string via the register
si, so, the first thing print_char does is using the instruction lodsb

which is going to transfer the first character of the string to the register
al and increase the value of si by 1 byte, after that, we check the
character that has been transferred from the memory to al, if it is 0,
that means we have reached to the end of the string and the code
jumps to the label printing_finished, otherwise, the interrupt 10h
of BIOS is called to print the content of the register al on the screen,
then we jump to print_char again to repeat this operation until we
reach the end of the string.

When printing a string finishes, the label printing_finished starts
by printing a new line after the string, the new line is represented by
the number 10 in ASCII, after that we are going to use the service 03h

to read the current position of the cursor, then we use the service 02h

to set the cursor to position 0 by passing it to the register dl, otherwise,
the messages in the new lines will be printed in the position where
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the previous string finished, finally the function returns to the caller
by using the instruction ret.

1 title_string db ’The Bootloader of 539kernel.’, 0

2 message_string db ’The kernel is loading...’, 0

3 load_error_string db ’The kernel cannot be loaded’, 0

The code above defines the strings that have been used previously
in the source code, note the last part of each string, which is the null
character that indicates the end of a string 48.

Now, we have written our bootloader and the last thing to do is
to put the magic code in the end of it, the magic code which is a 2

bytes value should reside in the last two bytes in the first sector, that
is, in the locations 510 and 511 (the location number starts from 0),
otherwise, the firmware will not recognize the content of the sector as
a bootloader. To ensure that the magic code is written on the correct
location, we are going to fill with zeros the empty space between the
last part of bootloader code and the magic code, this can be achieved
by the following line.

1 times 510-($-$$) db 0

So, the instruction db will be called 510-($-$$) times, this expres-
sion gives us the remaining empty space in our bootloader before
the magic code, and because the magic code is a 2 bytes value, we
subtract ($-$$) from 510 instead of 512, we will use these two bytes
for the magic code, the expression ($-$$) uses the special expressions
of NASM $ and $$ and it gives the size of the bootloader code until
the current line. Finally, the magic code is presented.

1 dw 0xAA55

Implementing simple_kernel.asm

The simple_kernel.asm which the bootloader loads is too simple, it
prints the message Hello World!, From Simple Assembly 539kernel!,
we don’t need to go through its code in details since you know most
of it.

1 start:

2 mov ax, cs

3 mov ds, ax

4

5 ; --- ;

6

7 mov si, hello_string

8 call print_string

9

48 Exercise: What will be the behavior of the bootloader if we remove the null character
from title_string and message_string and keep it in load_error_string?
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10 jmp $

11

12 print_string:

13 mov ah, 0Eh

14

15 print_char:

16 lodsb

17

18 cmp al, 0

19 je done

20

21 int 10h

22

23 jmp print_char

24

25 done:

26 ret

27

28 hello_string db ’Hello World!, From Simple Assembly 539kernel!’, 0

The only lines that you are not familiar with until now are the
first two lines in the label start which will be explained in details in
chapter 2. Finally the Makefile is the following.

1 ASM = nasm

2 BOOTSTRAP_FILE = bootstrap.asm

3 KERNEL_FILE = simple_kernel.asm

4

5 build: $(BOOTSTRAP_FILE) $(KERNEL_FILE)

6 $(ASM) -f bin $(BOOTSTRAP_FILE) -o bootstrap.o

7 $(ASM) -f bin $(KERNEL_FILE) -o kernel.o

8 dd if=bootstrap.o of=kernel.img

9 dd seek=1 conv=sync if=kernel.o of=kernel.img bs=512

10 qemu-system-x86_64 -s kernel.img

11

12 clean:

13 rm -f *.o
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C H A P T E R 2 : A N O V E RV I E W O F X 8 6 A R C H I T E C T U R E

2.1 introduction

In our situation, and by using modern terminology, we can view the
processor as a library and framework. A library because it provides
us with a bunch of instructions to perform whatever we want, and
a framework because it has general rules that organize the overall
environment of execution, that is, it forces us to work in a specific way.
We have seen some aspects of the first part when we have written the
bootloader, that is, we have seen the processor as a library. In this
chapter, we are going to see how the processor works as a framework
by examining some important and basic concepts of x86. We need to
understand these concepts to start the real work of writing 539kernel.

2.2 x86 operating modes

In x86 an operating mode specifies the overall picture of the processor,
such as the maximum size of available registers, the available advanced
features for the running operating system, the restrictions and so on.

When we developed the bootloader in the previous chapter we have
worked with an x86 operating mode named real address mode (or for
short real mode) which is an old operating mode that is still supported
by modern x86 processors for the sake of backward compatibility, due
to that when the computer is turned on, it initially runs on real mode.

Real mode is a 16-bit operating mode which means that, maxi-
mally, only 16 bits of register size can be used, even if the actual size
of the registers is 64-bit. Using only 16 bits of registers has conse-
quences other than the size itself, these consequences are considered
as disadvantages in modern days, for example, in real mode the size
of the main memory is limited, even if the computer has 16GB of
memory, real mode can deal only with 1MB. Furthermore, any code
which runs on real mode should be a 16-bit code, for example, the
aforementioned 32-bit registers (such as eax) cannot be used in real
mode code, their 16-bit counterparts should be used instead, as an
example, the 16-bit ax should be used instead of eax and so on.

38
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Some core features of modern operating systems nowadays are:
multitasking, memory protection and virtual memory 1 and real mode
provides nothing to implement these features. However, in mod-
ern x86 processors, new and more advanced operating modes have
been introduced, namely, protected mode which is a 32-bit operating
mode and long mode which is a relatively new 64-bit operating mode.
Although the long mode provides more capacity for its users, for
example, it can deal with 16 exabytes of memory, we are going to
focus on protected mode since it provides the same basic mechanisms
that we need to develop a modern operating system kernel with the
aforementioned features, hence, 539kernel is a 32-bit kernel which
runs under protected mode.

Since protected mode is a 32-bit operating mode then 32 bits of
registers can be used, also, protected mode has the ability to deal with
4GB of main memory, and most importantly, it provides important
features which we are going to explore through this book that helps
us in implementing modern operating system kernel features.

As we have said before, multitasking is one of core features that
modern operating systems provide. In multitasking environment more
than one software can run at the same time, at least illusionary, even if
there is only one processor or the current processor has only one core.
For the sake of making our next discussion easier we should define
the term process which means a program that is currently running. For
example, if your web browser is currently running then this running
instance of it is called a process, its code is loaded into the main
memory and the processor is currently executing it. Another property
of general-purpose operating systems is that they allow the user to run
any software from unknown sources which means that these software
cannot be trusted, they may contain code that intentionally or even
unintentionally breach the security of the system or cause the system
to crash.

Due to these two properties of modern general-purpose operating
systems, the overall system needs to be protected from multiple actions.
First, either in multitasking or monotasking 2 environment, the kernel
of the operating system which is the most sensitive part of the system,
should be protected from current processes, no process should be able
to access any part of the kernel’s memory either by reading from it
or writing to it, also, no process should be able to call any of kernel’s
code without kernel’s consent. Second, the sensitive instructions and
registers that change the behavior of the processor (e.g. switching from
real-mode to protected-mode) should be only allowed for the kernel
which is the most privileged component of the system, otherwise,
the stability of the system will be in danger. Third, in multitasking

1 If some of these terms are new for you don’t worry about them too much, you will
learn them gradually throughout this book.

2 That is, the user of the operating system can only run one process at a given time.
DOS is a an example of monotasking operating system.
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environment the running processes should be protected from each
other in the same way the kernel is protected from them, no process
should interfere with another.

In x86, the segmentation mechanism provided a logical view of
memory in real-mode and it has been extended in protected-mode
to provide the needed protection which has been described in the
third point 3, while segmentation can be used in x86 for this kind of
protection, it is not the sole way to perform that, the another well-
known way is called paging, but segmentation is the default in x86 and
cannot be turned off while paging is optional, the operating system
has the option to use it as a way of memory protection or not.

Also, in the protected-mode the concept of privilege levels has been
introduced to handle the protections needed in the previous first and
second points. The academic literature of operating systems separate
the system environment into two modes, kernel-mode and user-mode, at
a given time, the system may run on one of these modes and not both
of them. The kernel runs on kernel-mode, and has the privilege to do
anything (e.g. access any memory location, access any resource of the
system and perform any operation), while the user applications run
on user-mode which is a restricted environment where the code that
runs on doesn’t have the privilege to perform sensitive actions.

This kind of separation has been realized through privilege levels
in x86 which provides four privilege levels numbered from 0 to
3. The privilege level 0 is the most privileged level which can be
used to realize the kernel-mode while the privilege level 3 is the least
privileged which can be used to realize the user-mode. For privilege
levels 1 and 2 it’s up to the kernel’s designer to use them or not, some
kernel designs suggest to use these levels for device drivers. According
to Intel’s manual, if the kernel’s design uses only two privilege levels,
that is, a kernel-mode and user-mode, then the privilege level 0 and 3

should be used and not for example 0 and 1.
In addition to protecting the kernel’s code from being called with-

out its consent and protecting kernel’s data from being accessed by
user processes (as both required by first point above), the privilege
levels also prevent user processes 4 from executing privileged instruc-
tions (as required by second point above), only the code which runs
in the privilege level 0, that is, the kernel, will be able to execute
these instructions since they could manipulate sensitive parts of the
processor’s environment 5 that only the kernel should maintain.

When a system uses different privilege levels to run, as in most
modern operating systems, the x86 processor maintains what is called
current privilege level (CPL) which is, as its name suggests, the current
privilege level of the currently running code. For example, if the

3 Segmentation will be examined in details later on this chapter.
4 That is, the processes which runs on privilege level greater than 0

5 For example, loading GDT register by using the instruction lgdt as we will see later in
this chapter.
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currently running code belongs to the kernel then the current privilege
level will be 0 and according to it, the processor is going to decide
allowed operations. In other words, we can say that the processor
keeps tracking the current state of the currently running system and
one of the information in this state is in which privilege level (or mode)
the system is currently running.

2.3 numbering systems

The processor works with all values as binary numbers while it is
natural for us as human beings to deal with numbers as decimal
numbers. A number by itself is an abstract concept, it is something
in our mind, but to communicate with each others, we represent the
numbers by using symbols which is named numerals. For example,
the conceptual number one can be represented by different numeral
systems. In Arabic numeral system the number one is expressed as 1,
while in Roman numeral system it is expressed as I.

A numeral system is writing system, that is, it gives us rules of how
to write a number down as a symbol, it focuses on the way of writing
the numbers. On the other hand, the numbers can be dealt with by
a numbering system, we use the decimal numbering system to deal with
numbers, think about them and perform arithmetic operations upon
them, the processor uses the binary numbering system to do the same
with numbers. There are numbering systems other than the decimal
and binary numbering system, and any number can be represented
by any numbering system.

A number system is defined by its base which is also called radix,
this base defines the list of available digits in the numbering system
starting from 0 to base - 1, the total of available digits equals the
base. Consider the decimal numbering system, its base is 10 which
means the available digits in this system are: 0, 1, 2, 3, 4, 5, 6,

7, 8, 9, a total of 10 digits. These digits can be used to create larger
numbers, for example, 539 which consists of the digits 5, 3 and 9.

On the other hand, the base of binary numbering system is 2,
therefore, the available digits are only 0 and 1, and as in the decimal
numbering system they can be used to compose larger numbers, for
example, the number two in binary numbering system is 10 6, be
careful, this numeral does not represent the number ten, it represents
the number two but in binary numbering system. When we discuss
numbers in different numbering systems, we put the initial letter of
the numbering system name in the end of the number, for example,
10d and 10b are two different numbers, the first one is ten in decimal
while the second one is two in binary.

6 And from here came the well-known joke: “There are 10 types of people in this world,
those who understand binary and those who don’t”.
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Furthermore, basic arithmetic operations such as addition and sub-
traction can be performed on the numbering system, for example, in
binary 1 + 1 = 10 and it can be performed systematically, also, a rep-
resentation of any number in any numbering system can be converted
to any other numbering system systematically 7, while this is not a
good place to show how to perform the operations and conversions
for different numbering system, you can find many online resources
that explain these operations on the well-known number systems.

By now it should be obvious for you that changing the base (radix)
gives us a new numbering system and the base can be any number
which implies that the total of numbering systems is infinite! One
of useful and well-known numbering system is hexadecimal which its
base is 16 and its digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B,

C, D, E, F where A means ten, B means eleven and so on. So, why
hexadecimal is useful in our situation? Since binary is used in the
processor it will be easier to discuss some related entities such as the
value of FLAGS register which each bit on it represents a value for a
different thing, another example is memory addresses. But consider
the following example which is a binary number that represents a
memory address.

1 00000000 00000000 00000000 00000001b

It is too long and it will be tedious to work with, and for that the
hexadecimal numbering system can be useful. Each digit in hexadec-
imal represents four bits 8, that is, the number 0h in hexadecimal is
equivalent to 0000b in binary. As the 8 bits known as a byte, the
4 bits is known as a nibble, that is, a nibble is a half byte and, as we
have said, but in other words, one digit of hexadecimal represents a
nibble. So, we can use hexadecimal to represent the same memory
address value in more elegant way.

1 00 00 00 01h

Table 1: An Example of How Zero to Fifteen are Represented in the Three
Numbering Systems.

Decimal Binary Hexadecimal

0 0 0

1 1 1

2 10 2

3 11 3

4 100 4

5 101 5

7 I think It’s too brave to state this claim, however, it holds true at least for the well-
known numbering system.

8 Can you tell why? [Hint: How the maximum hexadecimal number F is represented
in binary?]



2.4 the basic view of memory 43

Figure 5: The Physical View of the Memory. The Size of it is n Bytes.

Decimal Binary Hexadecimal

6 110 6

7 111 7

8 1000 8

9 1001 9

10 1010 A
11 1011 B
12 1100 C
13 1101 D
14 1110 E
15 1111 F

2.4 the basic view of memory

The basic view of the main memory is that it is an array of cells, each
cell has the ability to store one byte and it is reachable by a unique
number called memory address 9, the range of memory addresses starts
from 0 to some limit x, for example, if the system has 1MB of physical
main memory, then the last memory address in the range will be
1023, as we know, 1MB = 1024 bytes and since the range starts from
0 and not 1, then the last memory address in this case is 1023 and
not 1024. This range of memory addresses is known as address space
and it can be a physical address space which is limited by the physical
main memory or a logical address space. A well-known example of
using logical address space that we will discuss in a latter chapter is
virtual memory which provides a logical address space of size 4GB in
32-bit architecture even if the actual size of physical main memory
is less than 4GB. However, The address space starts from the memory
address 0, which is the index of the first cell (byte) of the memory, and
it increases by 1, so the memory address 1 is the index of the second
cell of the memory, 2 is the index of third cell of memory and so on.
Viewing the memory as an array of contiguous cells is also known as
flat memory model.

When we say physical we mean the actual hardware, that is, when
the maximum capacity of the hardware of the main memory (RAM) is
1MB then the physical address space of the machine is up to 1MB. On
the other hand, when we say logical that means it doesn’t necessarily

9 The architecture which each memory address points to 1 byte is known as byte-
addressable architecture or byte machines. It is the most common architecture. Of course,
other architectures are possible, such as word-addressable architecture or word machines.



2.4 the basic view of memory 44

represents or obeys the way the actual hardware works on, instead it
is a hypothetical way of something that doesn’t exist in the real world
(the hardware). To make the logical view of anything works, it should
be mapped into the real physical view, that is, it should be somehow
translated for the physical hardware to be understood, this mapping
is handled by the software or sometimes special parts of the hardware.

Now, for the following discussion, let me remind you that the
memory address is just a numerical value, it is just a number. When I
discuss the memory address as a mere number I call it memory address
value or the value of memory address, while the term memory address
keeps its meaning, which is a unique identifier that refers to a specific
location (cell) in the main memory.

The values of memory addresses are used by the processor all the
time to be able to perform its job, and when it is executing some
instructions that involve the main memory (e.g. reading a content
from some memory location or dealing with program counter), the
related values of memory addresses are stored temporarily on the
registers of the processor, due to that, the length of a memory address
value is bounded to the size of the processor’s registers, so, in 32-bit

environments, where the size of the registers is usually 32-bit, the
length of the memory address value is always 32 bits, why am I
stressing “always” here? Because even if less than 32 bits is enough to
represent the memory address value, it will be represented in 32 bits
though, for example, assume the memory address value 1, in binary,
the value 1 can be represented by only 1 bit and no more, but in
reality, when it is stored (and handled) by the 32-bit processor, it will
be stored as the following sequence of bits.

1 00000000 00000000 00000000 00000001

As you can see, the value 1 has been represented in exactly 32 bits,
appending zeros to the left doesn’t change the value itself, it is similar
to writing a number as 0000539 which is exactly 539.

It has been mentioned earlier that the register size that stores the
values of memory address in order to deal with memory contents
affects the available size of main memory for the system. Take for
example the instruction pointer register, if its size, say, 16 bits then
the maximum available memory for code will be 64KB (64 KB = 65536

Bytes / 1024) since it is the last reachable memory address by the
processor for fetching an instruction. What if the size of the instruction
pointer register is 32 bits, then the maximum available memory for
code will be 4GB. Why is that?

To answer this question let’s work with decimal numbers first. If I
tell you that you have five blanks, what is the largest decimal number
you can represent in these five blanks? the answer is 99999d. In the
same manner, if you have 5 blanks, what is the largest binary number
you can represent in these 5 blanks? it is 11111b which is equivalent
to 31d, the same holds true for the registers that store the value of
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memory addresses, given the size of such register is 16 bits, then there
is 16 blanks, and the largest binary number that can be represented
in those 16 blanks is 11111111 11111111b or in hexadecimal FF FFh,
which is equivalent to 65535d, that means the last byte a register of
size 16 bits can refer to is the byte number 65535d because it is the
largest value this register can store and no more, which leads to the
maximum size of main memory this register can handle, it is 65535

bytes which is equivalent to 64KB and the same applies on any other
size than 16 bits.

2.5 x86 segmentation

The aforementioned view of memory, that is, the addressable array of
bytes can be considered as the physical view of the main memory which
specifies the mechanism of accessing the data. On top of this physical
view a logical view can be created and one example of logical views is
x86 segmentation.

In x86 segmentation the main memory is viewed as separated parts
called segments and each segment stores a bunch of related data. To
access data inside a segment, each byte can be referred to by its own
offset. The running program can be separated into three possible types
of segments in x86, these types are: code segment which stores the
code of the program under execution, data segments which store the
data of the program and the stack segment which stores the data of
program’s stack. Segmentation is the default view of memory in x86

and it’s unavoidable and the processor always run with the mind that
the running program is divided into segments, however, most modern
operating system choose to view the memory as the one described in
flat memory model instead of viewing it as segmented areas, to be
able to implement flat memory model in x86 which doesn’t allow to
disable segmentation, at least two segments (one for code and one for
data) should be defined in the system, and the size of both segments
should be same as physical memory’s size and both of segments start
from the first memory address 0 and ends in the last memory address
(memory size - 1), that is, these both segments will overlap.

2.5.1 Segmentation in Real Mode

For the sake of clarity, let’s discuss the details of segmentation under
real mode first. We have said that logical views (of anything) should
be mapped to the physical view either by software or hardware, in this
case, the segmentation view is realized and mapped to the architecture
of the physical main memory by the x86 processor itself, that is, by
the hardware. So, we have a logical view, which is the concept of
segmentation which divides a program into separated segments, and
the actual physical main memory view which is supported by the real
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Figure 6: An Example of The Segmented View of the Memory

RAM hardware and sees the data as a big array of bytes. Therefore, we
need some tools to implement (map) the logical view of segmentation
on top the actual hardware.

For this purpose, special registers named segment registers are pre-
sented in x86, the size of each segment register is 16 bits and they
are: CS which is used to define the code segment. SS which is used
to define the stack segment. DS, ES, FS and GS which can be used
to define data segments, that means each program can have up to
four data segments. Each segment register stores the starting memory
address of a segment and here you can start to observe the mapping
between the logical and physical view. In real mode, the size of each
segment is 64KB and as we have said we can reach any byte inside
a segment by using the offset of the required byte, you can see the
resemblance between a memory address of the basic view of memory
and an offset of the segmentation view of memory 10.

Let’s take an example to make the matter clear, assume that we
have a code of some program loaded into the memory and its starting
physical memory address is 100d, that is, the first instruction of this
program is stored in this address and the next instructions are stored
right after this memory address one after another. To reach the first
byte of this code we use the offset 0, so, the whole physical address of
the first byte will be 100:0d, as you can see, the part before the colon
is the starting memory address of the code and the part after the colon
is the offset that we would like to reach and read the byte inside it. In
the same way, let’s assume we would like to reach the offset 33, which
means the byte 34 inside the loaded code, then the physical address
that we are trying to reach is actually 100:33d. To make the processor
handle this piece of code as the current code segment then its starting
memory address should be loaded into the register CS, that is, setting
the value 100d to CS, so, we can say in other words that CS contains
the starting memory address of currently executing code segment (for
short: current code segment).

10 The concept and term of offset is not exclusive to segmentation, it is used on other
topics related to the memory.
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As we have said, the x86 processor always run with the mind that
the segmentation is in use. So, let’s say it is executing the following
assembly instruction jmp 150d which jumps to the address 150d. What
really happens here is that the processor consider the value 150d as
an offset instead of a full memory address, so, what the instruction
requests from the processor here is to jump to the offset 150 which
is inside the current code segment, therefore, the processor is going
to retrieve the value of the register CS to know what is the starting
memory address of the currently active code segment and append the
value 150 to it. Say, the value of CS is 100, then the memory address
that the processor is going to jump to is 100:150d.

This is also applicable on the internal work of the processor, do you
remember the register IP which is the instruction pointer? It actually
stores the offset of the next instruction instead of the whole memory
address of the instruction. Any call (or jump) to a code inside the same
code segment of the caller is known as near call (or jump), otherwise
is it a far call (or jump). Again, let’s assume the current value of CS is
100d and you want to call a label which is on the memory location
900:1d, in this situation you are calling a code that reside in a different
code segment, therefore, the processor is going to take the first part of
the address which is900d, loads it to CS then loads the offset 1d in IP.
Because this call caused the change of CS value to another value, it is
a far call.

The same is exactly applicable to the other two types of segments
and of course, the instructions deal with different segment types based
on their functionality, for example, you have seen that jmp and call

deal the code segment in CS, that’s because of their functionality which
is related to the code. Another example is the instruction lodsb which
deals with the data segment DS, the instruction push deals with the
stack segment SS and so on.

Segmentation Used in the Bootloader

In the previous chapter, when we wrote the bootloader, we have dealt
with the segments. Let’s get back to the source code of the bootloader,
you remember that the firmware loads the bootloader on the memory
location 07C0h and because of that we started our bootloader with the
following lines.

1 mov ax, 07C0h

2 mov ds, ax

Here, we told the processor that the data segment of our program
(the bootloader) starts in the memory address 07C0h 11, so, if we refer

11 Yes, all segments can be on the same memory location, that is, there is a 64KB segment
of memory which is considered as the currently active code segment, data segment
and stack segment. We have already mentioned that when we have discussed how to
implement flat-memory model on x86.
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to the memory to read or write data, the processor starts with the
memory address 07C0h which is stored in the data segment register ds
and then it appends the offset that we are referring to, in other words,
any reference to data by the code being executed will make the proces-
sor to use the value in data segment register as the beginning of the
data segment and the offset of referred data as the rest of the address,
after that, this physical memory address of the referred data will be
used to perform the instruction. An example of instructions that deal
with data in our bootloader is the line mov si, title_string.

Now assume that BIOS has set the value of ds to 0 (it can be
any other value) and jumped to our bootloader, that means the data
segment in the system now starts from the physical memory address
0 and ends at the physical memory address 65535 since the maximum
size of a segment in real-mode is 64KB. Now let’s take the label
title_string as an example and let’s assume that its offset in the
binary file of our bootloader is 490, when the processor starts to
execute the line mov si, title_string 12 it will, somehow, figures
that the offset of title_string is 490 and based on the way that x86

handles memory accesses the processor is going to think that we are
referring to the physical memory address 490 since the value of ds is 0,
but in reality, the correct physical memory address of title_string is
the offset 490 inside the memory address 07C0h since our bootloader
is loaded into this address and not the physical memory address 0, so,
to be able to reach to the correct addresses of the data that we have
defined in our bootloader and that are loaded with the bootloader
starting from the memory address 07C0h we need to tell the processor
that our data segment starts from 07C0h and with any reference to data,
it should calculate the offset of that data starting from this physical
address, and that exactly what these two lines do, in other words,
change the current data segment to another one which starts from the
first place of our bootloader.

The second use of the segments in the bootloader is when we tried
to load the kernel from the disk by using the BIOS service 13h:02h in
the following code.

1 mov ax, 0900h

2 mov es, ax

3

4 mov ah, 02h

5 mov al, 01h

6 mov ch, 0h

7 mov cl, 02h

8 mov dh, 0h

9 mov dl, 80h

10 mov bx, 0h

11 int 13h

12 Which loads the physical memory address of title_string to the register si.
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You can see here, we have used the other data segment ES to define
a new data segment that starts from the memory address 0900h, we
did that because the BIOS service 13h:02h loads the required content
(in our case the kernel) to the memory address ES:BX, for that, we
have defined the new data segment and set the value of bx to 0h.
That means the code of the kernel will be loaded on 0900:0000h

and because of that, after loading the kernel successfully we have
performed a far jump.

1 jmp 0900h:0000

Once this instruction is executed, the value of CS will be changed
from the value 07C0h, where the bootloader resides, to the value 0900h

where the kernel resides and the value of IP register will be 0000 then
the execution of the kernel is going to start.

2.5.2 Segmentation in Protected Mode

The fundamentals of segmentation in protected mode is exactly same
as the ones explained in real mode, but it has been extended to provide
more features such as memory protection. In protected mode, a table
named global descriptor table (GDT) is presented, this table is stored in
the main memory and its starting memory address is stored in the
special purpose register GDTR as a reference, each entry in this table
called a segment descriptor which has the size 8 bytes and they can be
referred to by an index number called segment selector 13 which is the
offset of the entry inside GDT table, For example, the offset of the first
entry in GDT is 0, and adding this offset with the value of GDTR gives
us the memory address of that entry, however, the first entry of GDT
should not be used by the operating system.

An entry of GDT (a segment descriptor), defines a segment (of any
type) and has the information that is required by the processor to deal
with that segment. The starting memory address of the segment is
stored in its descriptor 14, also, the size (or limit) of the segment. The
segment selector of the currently active segment should be stored in
the corresponding segment register.

To clarify the matter, consider the following example. Let’s assume
we are currently running two programs and their code are loaded into
the main memory and we would like to separate these two pieces of
code into a couple of code segments. The memory area A contains code
of the first program and starts from the memory address 800 while
the memory area B contains the code of the second programB and
starts in the memory address 900. Assume that the starting memory
address of GDT is 500 which is already loaded in GDTR.

13 This is a relaxed definition of segment selector, a more accurate one will be presented
later.

14 In real mode, the starting address of the segment is stored directly on the correspond-
ing segment register (e.g. CS for code segment).
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To make the processor consider A and B as code segments we should
define a segment descriptor for each one of them. We already know
that the size of a segment descriptor is 8 bytes, so, if we define a
segment descriptor for the segment A as entry 1 (remember that the
entries on GDT starts from zero) then its offset (segment selector) in
GDT will be 8 (1 * 8), the segment descriptor of A should contain the
starting address of A which is 800, and we will define the segment
descriptor of B as entry 2 which means its offset (segment selector)
will be 16 (2 * 8).

Let’s assume now that we want the processor to execute the code of
segment A, we already know that the processor consults the register
CS to decide which code segment is currently active and should be
executed next, for that, the segment selector of code segment A should
be loaded in CS, so the processor can start executing it. In real mode,
the value of CS and all other segment registers was a memory address,
on the other hand, in protected mode, the value of CS and all other
segment registers is a segment selector.

In our situation, the processor takes the segment selector of A from
CS which is 8 and starting from the memory address which is stored
in GDTR it walks 8 bytes, so, if GDTR = 500, the processor will find
the segment descriptor of A in the memory address 508. The starting
address of A will be found in its segment descriptor and the processor
can use it with the value of register EIP to execute A’s code. Let’s
assume a far jump is occurred from A to B, then the value of CS will be
changed to the segment selector of B which is 16.

The Structure of Segment Descriptor

A segment descriptor is an 8 bytes entry of global descriptor table
which stores multiple fields and flags that describe the properties of
a specific segment in the memory. With each memory reference to
any segment, the processor is going to consult the descriptor that
describes the segment in question to obtain basic information like
starting memory address of this segment.

Beside the basic information, a segment descriptor stores informa-
tion the helps in memory protection, due to that, segmentation in x86

protected-mode is considered as a way for memory protection and
not a mere logical view of the memory, so each memory reference is
being monitored by the processor.

By using those properties that are related to memory protection, the
processor will be able to protect the different segments on the system
from each other and not letting some less privileged to call a code or
manipulate data which belong to more privileged area of the system,
a concrete example of that is when a userspace software (e.g. Web
Browser) tries to modify an internal data structure in the kernel.

In the following subsections, each field and flag of segment descrip-
tor will be explained, but before getting started we need to note that in
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here and in Intel’s official x86 manual the term field is used when the
size of the value that should be stored in the descriptor is more than
1 bit, for example the segment’s starting memory address is stored in
4 bytes, then the place where this address is stored in the descriptor
is called a field, otherwise when the term flag is used that means the
size of the value is 1 bit.

segment’s base address and limit The most important in-
formation about a segment is its starting memory address, which is
called the base address of a segment. In real mode, the base address
was stored in the corresponding segment register directly, but in pro-
tected mode, where we have more information about a segment than
mere base address, this information is stored in the descriptor of the
segment 15.

When the currently running code refers to a memory address to
read from it, write to it (in the case of data segments) or call it (in the
case of code segments) it is actually referring to a specific segment
in the system 16. For the simplicity of next discussions, we call this
memory address, which is referenced by the currently running code,
the generated memory address because, you know, it is generated by the
code.

Any generated memory address in x86 architecture is not an actual
physical memory address 17, that means, if you hypothetically get a
generated memory address and try to get the content of its physical
memory location, the obtained data will not be same as the data
which is required by the code. Instead, a generated memory address
is named by Intel’s official manual a logical memory address because,
you know, it is not real memory address, it is logical. Every logical
memory address refers to some byte in a specific segment in the
system, and to be able to obtain the data from the actual physical
memory, this logical memory address should be translated to a physical
memory address 18.

The logical memory address in x86 may pass two translation pro-
cesses instead of one in order to obtain the physical memory address.
The first address translation is performed on a logical memory address
to obtain a linear memory address which is another not real and not
physical memory address which is there in x86 architecture because of
paging feature. If paging 19 is enabled in the system, a second trans-

15 Reminder: In protected mode, the corresponding segment register stores the selector
of the currently active segment.

16 And it should, since segmentation is enabled by default in x86 and cannot be disabled.
17 Remember our discussion of the difference between our logical view of the memory

(e.g. segmentation) and the actual physical hardware
18 We can see here how obvious the mapping between the logical view of the memory

and the real-world memory.
19 Don’t worry about paging right now. It will be discussed later in this book. All you

need to know now is that paging is another logical view of the memory. Paging is
disabled by default in x86 which makes it an optional feature unlike segmentation.
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Figure 7: Shows How a Logical Memory Address is Translated to a Linear
Memory Address (Which Represents a Physical Address when
Paging is Disabled).

lation process takes place on this linear memory address to obtain
the real physical memory address. If paging is disabled, the linear
memory address which is generated by the first translation process
is same as the physical memory address. We can say that the first
translation is there in x86 due to the segmentation view of memory,
while the second translation is there in x86 due to the paging view of
memory.

For now, our focus will be on the translation from a logical memory
address to a linear memory address which is same as the physical
memory address since paging feature is disabled by default in x86.
Each logical memory address consists of two parts, a 16 bits segment
selector and a 32 bits offset. When the currently running code gener-
ates a logical memory address (for instance, to read some data from
memory) the processor needs to perform the translation process to
obtain the physical memory address as the following. First, it reads
the value of the register GDTR which contains the starting physical
memory address of GDT, then it uses the 16-bit segment selector in
the generated logical address to locate the descriptor of the segment
that the code would like to read the data from, inside segment’s de-
scriptor, the physical base address (the starting physical address) of
the requested segment can be found, the processor obtains this base
address and adds the 32-bit offset from the logical memory address
to the base address to obtain the last result, which is the linear memory
address.

During this operation, the processor uses the other information in
the segment descriptor to enforce the policies of memory protection.
One of these policies is defined by the limit of a segment which
specifies its size, if the generated code refers to an offset which exceeds
the limit of the segment, the processor should stop this operation.
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For example, assume hypothetically that the running code has the
privilege to read data from data segment A and in the physical memory
another data segment B is defined right after the limit of A, which
means if we can exceed the limit of A we will able to access the data
inside B which is a critical data segment that stores kernel’s internal
data structures and we don’t want any code to read from it or write
to it in case this code is not privileged to do so. This can be achieved
by specifying the limit of A correctly, and when the unprivileged
code tries maliciously to read from B by generating a logical memory
address that has an offset which exceeds the limit of A the processor
prevents the operation and protects the content of segment B.

The limit, or in other words, the size of a given segment is stored
in the 20 bits segment limit field of that segment descriptor and how
the processor interprets the value of segment limit field depends
on the granularity flag (G flag) which is also stored in the segment’s
descriptor, when the value of this flag is 0 then the value of the limit
field is interpreted as bytes, let’s assume that the limit of a given
segment is 10 and the value of granularity flag is 0, that means the
size of this segment is 10 bytes. On the other hand, when the value of
granularity flag is 1, the value of segment limit field will be interpreted
as of 4KB units, for example, assume in this case that the value of limit
field is also 10 but G flag = 1, that means the size of the segment will
be 10 of 4KB units, that is, 10 * 4KB which gives us 40KB which equals
40960 bytes.

Because the size of segment limit field is 20 bits, that means the
maximum numeric value it can represent is 2^20 = 1,048,576, which
means if G flag equals 0 then the maximum size of a specific segment
can be 1,048,576 bytes which equals 1MB, and if G flag equals 1 then
the maximum size of a specific segment can be 1,048,576 of 4KB units
which equals 4 GB.

Getting back to the structure of descriptor, the bytes 2, 3 and 4 of
the descriptor store the least significant bytes of segment’s base address
and the byte 7 of the descriptor stores the most significant byte of the
base address, the total is 32 bits for the base address. The bytes 0 and
1 of the descriptor store the least significant bytes of segment’s limit and
byte 6 stores the most significant byte of the limit. The granularity flag
is stored in the most significant bit of the the byte 6 of the descriptor.

Before finishing this subsection, we need to define the meaning
of least significant and most significant byte or bit. Take for example
the following binary sequence which may represent anything, from a
memory address value to a UTF-32 character.

0111 0101 0000 0000 0000 0000 0100 1101
You can see the first bit from left is on bold format and its value is 0,

based on its position in the sequence we call this bit the most significant
bit or high-order bit, while the last bit on the right which is in italic
format and its value is 1 is known as least significant bit or low-order bit.
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The same terms can be used on byte level, given the same sequence
with different formatting.

0111 0101 0000 0000 0000 0000 0100 1101
The first byte (8 bits) on the left which is in bold format and its

value is 0111 0101 is known as most significant byte or high-order byte
while the last byte on the right which is on italic format and its value
is 0100 1101 is known as least significant byte or low-order byte.

Now, imagine that this binary sequence is the base address of a
segment, then the least significant 3 bytes of it will be stored in bytes
2, 3 and 4 of the descriptor, that is, the following binary sequence.

1 0000 0000 0000 0000 0100 1101

While the most significant byte of the binary sequence will be stored
in the 7th byte of the descriptor, that is, the following binary sequence.

1 0111 0101

segment’s type Given any binary sequence, it doesn’t have any
meaning until some context is added. For example, what does the
binary sequence 1100 1111 0000 1010 represents? It could represent
anything, a number, characters, pixels on an image or even all of them
based on how its user interprets it. When an agent (e.g. a bunch
of code in running software or the processor) works with a binary
sequence, it should know what does this binary sequence represent to
be able to perform useful tasks. In the same manner, when a segment
is defined, the processor (the agent) should be told how to interpret
the content inside this segment, that is, the type of the segment should
be known by the processor.

Till this point, you probably noticed that there is at least two types
of segments, code segment and data segment. The content of the
former should be machine code that can be executed by the processor
to perform some tasks, while the content of the latter should be data
(e.g. values of constants) that can be used by a running code. These
two types of segments (code and data) belong to the category of
application segments, there is another category of segment types which
is the category of system segments and it has many different segment
types belong to it.

Whether a specific segment is an application or system segment,
this should be mentioned in the descriptor of the segment in a flag
called S flag or descriptor type flag which is the fifth bit in byte number
5 of the segment descriptor. When the value of S flag is 0, then the
segment is considered as a system segment, while it is considered as
an application segment when the value of S flag is 1. Our current
focus is on the latter case.

As we have mentioned before, an application segment can be either
code or data segment. Let’s assume some application segment has
been referenced by a currently running code, the processor is going
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to consult the descriptor of this segment, and by reading the value of
S flag (which should be 1) it will know that the segment in question
is an application segment, but which of the two types? Is it a code
segment or data segment? To answer this question for the processor,
this information should be stored in a field called type field in the
segment’s descriptor.

Type field in segment descriptor is the first 4 bits (nibble) of the fifth
byte and the most significant bit specifies if the application segment
is a code segment (when the value of the bit is 1) or a data segment
(when the value of the bit is 0). Doesn’t matter if the segment is a code
or data segment, in the both cases the least significant bit of type field
indicates if the segment is accessed or not, when the value of this flag
is 1, that means the segment has been written to or read from (AKA:
accessed), but if the value of this flag is 0, that means the segment
has not been accessed. The value of this flag is manipulated by the
processor in one situation only, and that’s happen when the selector
of the segment in question is loaded into a segment register. In any
other situation, it is up to the operating system to decide the value of
accessed flag. According to Intel’s manual, this flag can be used for
virtual memory management and for debugging.

Code Segment Flags

When the segment is a code segment, the second most significant bit
(tenth bit) is called conforming flag (also called C flag) while the third
most significant bit (ninth bit) called read-enabled flag (also called R

flag.). Let’s start our discussion with the simplest among those two
flags which is the read-enabled flag. The value of this flag indicates
how the code inside the segment in question can be used, when the
value of read-enabled flag is 1 20, that means the content of the code
segment can be executed and read from, but when the value of this
flag is 0 21 that means the content of the code segment can be only
executed and cannot read from. The former option can be useful when
the code contains data inside it (e.g. constants) and we would like to
provide the ability of reading this data. When read is enabled for the
segment in question, the selector of this segment can also be loaded
into one of data segment registers 22.

The conforming flag is related to the privilege levels that we had
an overview about them previously in this chapter. When a segment
is conforming, in other words, the value of conforming flag is 1,
that means a code which runs in a less-privileged level can call this
segment which runs in a higher privileged level while keeping the
current privilege level of the environment same as the one of the caller
instead of the callee.

20 Which means do enable read, since 1 is equivalent to true in the context of flags.
21 Which means don’t enable read.
22 Which makes sense, enabling reads from a code segment means it contains data also.
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For example, let’s assume for some reason a kernel’s designer de-
cided to provide simple arithmetic operations (such as addition and
subtraction) for user applications from the kernel code, that is, there
is no other way to perform these operations in that system but this
code which is provided by the kernel. As we know, kernel’s code
should run in privilege level 0 which is the most-privileged level,
and let’s assume a user application which runs in privilege level 3, a
less-privileged level, needs to perform an addition operation, in this
case a kernel code, which should be protected by default from being
called by less-privileged code, should be called to perform the task,
this can only realized if the code of addition operation is provided as
a conforming segment, otherwise the processor is going to stop this
action where a less-privileged code calls a more-privileged code.

Also you should note that the code of addition operation is going to
run in privilege level 3 although it is a part of the kernel which runs in
privilege level 0 and that’s because of the original caller which runs in
the privilege level 3. Furthermore, although conforming segment can
be called by a less-privilege code (e.g. user application calls the kernel),
the opposite cannot be done (e.g. the kernel calls a user application’s
code) and the processor is going to stop the operation.

Data Segment Flags

When the segment is data segment, the second most significant bit
(tenth bit) is called expansion-direction flag (also called E flag) while
the third most significant bit (ninth bit) is called write-enabled flag
(also called W flag). The latter one gives us the ability to make some
data segment a read-only when its value is 0, or we can make a data
segment both writable and readable by setting the value of write-
enabled flag to 1.

While the expansion-direction flag and its need will be examined
in details when we discuss x86 run-time stack in this chapter, what
we need to know right now is that when the value of this flag is 0, the
data segment is going to expand up (in Intel’s terms), but when the
value of this flag is 1, the data segment is going to expand down (in
Intel’s terms).

A last note about data segments is that all of them are non-conforming,
that is, a less-privileged code cannot access a data segment in a more-
privileged level. Furthermore, all data segments can be accessed by a
more-privileged code.

segment’s privilege level In our previous discussions, we
have stated that a specific segment should belong to a privilege level
and based on this privilege level the processor decides the protection
properties of the segment in question, for example, whether that
segment is a kernel-mode or user-mode segment and which privilege
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level a running code should belong to in order to be able to reach to
this segment

A field called descriptor privilege level (DPL) in segment descriptor is
where the operating system should set the privilege level of a given
segment. The possible values of this field, as we know, are 0, 1, 2 and
3, we have already discussed the meanings of these values previously
in this chapter. Descriptor privilege level field occupies the second
and third most significant bits of byte 5 in a descriptor.

segment’s present One of common operations that is performed
in a running system is loading data from secondary storage (e.g. hard
disk) into the memory and one example of that is loading a program
code into the memory when the user of the system request to run an
instance of a program, so, creating a new segment descriptor (hence,
creating new segment in the memory) for this data may precede
the completion of loading the data into the main memory, therefore,
there could be some segment descriptors in the system that points to
memory locations that don’t contain the real data yet.

In this case, we should tell the processor that the data in the memory
location that a specific descriptor points to is not the real data, and
the real segment is not presented in the memory yet, this helps the
processor to generate error when some code tries to access 23 the
segment’s data. To tell the processor whether a segment is presented
in the memory or not, segment-present flag (P flag) can be used, when
its value is 1 that means the segment is present in memory, while the
value 0 means the segment is not present in memory, this flag is the
most significant bit of byte 5 of a descriptor.

other flags We have covered all segment’s descriptor fields and
flags but three flags. The name of the first one changes depending on
the type of the segment and it occupies the second most significant
bit in the byte 6. When the segment in question is a code segment,
this flag is called default operation size (D flag). When the processor
executes the instructions it uses this flag to decide the length of the
operands, depending on the currently executing instruction, if the
value of D flag is 1 the processor is going to assume the operand has
the size of 32 bits if it is a memory address, and 32 bits or 8 bits if it
is not a memory address. If the value of D flag is 0 the processor is
going to assume the operand has the size of 16 bits if it is a memory
address, and 16 bits or 8 bits operand if it is not a memory address.

When the segment in question is a stack segment 24, the same flag
is called default stack pointer size (B flag), and it decides the size of the
memory address (as a value) which points to the stack, this memory

23 We use the term access here for both types of application segments. While this term is
valid for data segment, we mean execute for code segment.

24 The processor knows it is a stack segment if the segment selector is loaded into stack
segment selector register SS
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Figure 8: GDTR Structure

address is known as stack pointer and it is being used implicitly by
stack instructions such as push and pop. When the value of B flag is
1, then the size of stack pointer will be 32 bits and its value will be
stored in the register ESP (rather then SP), When the value of B flag is
0, then the size of stack pointer will be 16 bits and its value will be
stored in the register SP (rather then ESP).

When the segment in question is a data segment that grows upward,
this flag is called upper bound flag (B flag), when its value is 1 the
maximum possible size of the segment will be 4GB, otherwise, the
maximum possible size of the segment will be 64KB. Anyway, the
value of this flag (D/B flag) should be 1 for 32-bit code and data
segments (stack segments are included of course) and it should be 0

for 16-bit code and data segments.
The second flag is known as 64-bit code segment flag (L flag) which is

the third most significant bit in the byte 6 and from its name we can
tell that this flag is related to code segments. If the value of this flag is
1 that means the code inside the segment in question is a 64-bit code
while the value 0 means otherwise 25. When we set the value of L flag
to 1 the value of D/B flag should be 0.

The final flag is the fourth most significant bit in the byte 6, the
value of this flag has no meaning for the processor, hence, it will not
use it to make any decisions upon the segment in the question as we
have seen on all other flags and fields. On the other hand, this flag is
available for the operating system to use it in whatever way it needs,
or just ignores it by set it to any of possible values ,0 or 1 since it is
one bit.

The Special Register GDTR

The special register GDTR stores the base physical address 26 of the
global descriptor table, that is, the starting point of GDT table. Also,
the same register stores the limit (or size) of the table.

To load a value into the register GDTR the x86 instruction lgdt, which
stands for load global descriptor table, should be used. This instruction
takes one operand which is the whole value that should be loaded
into GDTR, the structure of this value should be similar to the structure
of GDTR itself which is shown in figure 8. The figure shows that the
total size of GDTR is 48 bits divided into two parts. The first part starts
from bit 0 (the least significant bit) to bit 15, this part contains the

25 In terms of Intel’s manual: compatibility mode.
26 More accurately, the linear address. Refer to discussion of memory translation process

in this chapter.
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limit of GDT table that we would like to load. The size of this part
of GDTR register is 16 bits which can represent the value 65,536 at
maximum, that means the maximum size of GDT table can be 64KB =

65,536 Bytes / 1024, and as we know, the size of each of descriptor
is 8 bytes, that means the GDT table can hold 8,192 descriptors at
most. The second part of GDTR starts from bit 16 to bit 47 (the most
significant bit) and stores the base memory address of GDT table that
we would like to load.

Local Descriptor Table

The global descriptor table is a system-wide table, in other words,
it is available for every process of the system. In addition to GDT,
x86 provides us with ability to define local descriptor tables (LDT) in
protected-mode which have the same functionality and structure of
GDT.

In contrary to GDT table, multiple LDT can be defined in the system,
and each one of them can be private to a specific process that is
currently running on the system, also, multiple running processes can
share a single LDT that is considered private for them by the kernel
and no other processes can reach this given LDT. Anyway, how to use
LDT depends on how the kernel is designed, and while GDT is required
in x86 architecture by default, LDT on the other hand is optional and
the designer of the kernel is the one who is responsible to decide
whether to use LDT or not.

Let’s assume that we need to create a new LDT table for process A

which is currently running on the system, this LDT table is already
filled with the descriptors that describe the segments which belong to
process A. The structure of the descriptors in LDT is exactly same as the
one that we already described in this chapter. To tell the processor that
a given region of a memory is an LDT table, a new segment descriptor
should be created in GDT.

In our previous discussion of S flag we mentioned that this flag tells
the processor whether a defined segment is an application segment (S
flag = 1) or a system segment (S flag = 0), the segment of the memory
that contains an LDT table is considered as a system segment, that
is, the value of S flag in the descriptor that describes an LDT table
should be 0 and because there are other types of system segments
than LDT then we should tell the processor this system segment is an
LDT table, to do that we should use the type field of the descriptor
that we already mentioned, the value of this field should be 0010b (2d)
for descriptors that describe an LDT table, how the processor can tell
which table should currently used for a given segment GDT or LDT will
be discussed in the next subsection.

The x86 instruction lldt is used to load the LDT table that we would
like to use now into a special register named LDTR which is a 16-bit
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Figure 9: Segment Selector Structure

register that should contain the segment selector 27 in GDT of the LDT

table that we would like to use, in other words, the index of segment
descriptor which describe the LDT table and which reside in GDT as an
entry should be loaded into LDTR register.

Segment Selector

As we know, the index (offset) of the descriptor that the currently
running code needs to use, whether this descriptor defines and code
or data segment, should be loaded into one of segment registers, but
how the can the processor tell if this index which is loaded into a
segment register is an index in the GDT or LDT?

When we discussed segment selectors previously in this chapter we
have said that our definition of this concept is a relaxed definition,
that is, a simplified one that omits some details. In reality, the index
of a segment descriptor is just one part of a segment selector, figure
9 shows the structure of a segment selector, which is same as the
structure of all segment registers CS, SS, DS, ES, FS and GS. We can
see from the figure that the size of a segment selector is 16 bits and
starting from the least significant bit (bit 0), the first two bits 0 and
1 are occupied by field known as requester privilege level (RPL). Bit 2
is occupied by a flag named table indicator (TI), and finally, the index
of a segment descriptor occupies the field from bit 3 until bit 15 of
the segment selector. The index field (descriptor offset) is already
well-explained in this chapter, so we don’t need to repeat its details.

The table indicator flag (TI) is the one which is used by the processor
to tell if the index in the segment selector is an index in GDT, when
the value of TI is 0, or LDT, when the value is 1. When the case is the
latter, the processor consults the register LDTR to know the index of
the descriptor that defines the current LDT in the GDT and by using this
index, the descriptor of LDT is read from GDT by the processor to fetch
the base memory address of the current LDT, after that, the index in
the segment selector register can be used to get the required segment
descriptor from the current LDT by using the latter base memory
address that just been fetched, of course these values are cached by
the processor for quick future access.

In our previous discussions of privilege levels we have discussed
two values, current privilege level (CPL) which is the privilege level
of the currently executing code and descriptor privilege level (DPL)

27 More accurate definition of a segment selector and its structure in protected-mode is
presented in the next subsection.
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which is the privilege level of a given segment, the third value which
contributes to the privilege level checks in x86 is requester privilege level
(RPL) which is stored in the segment selector, necessarily, RPL has four
possible values 0, 1, 2 and 3.

To understand the role of RPL let’s assume that a process X is running
in a user-mode, that is, in privilege level 3, this process is a malicious
process that aims to gain an access to some important kernel’s data
structure, at some point of time the process X calls a code in the kernel
and passes the segment selector of the more-privileged data segment
to it as a parameter, the kernel code runs in the most privileged level
and can access all privileged data segment by simply loading the
required data segment selector to the corresponding segment register,
in this case the RPL is set to 0 maliciously by process X, since the
kernel runs on the privilege level 0 and RPL is 0, the required segment
selector by process X will be loaded and the malicious process X will
be able to gain access to the data segment that has the sensitive data.

To solve this problem, RPL should be set to the requester privilege
level by the kernel to load the required data segment, in our example,
the requester (the caller) is the process X and its privilege level is 3

and the current privilege level is 0 since the kernel is running, but
because the caller has a less-privileged level the kernel should set
the RPL of the required data segment selector to 3 instead of 0, this
tells the processor that while the currently running code in a privilege
level 0 the code that called it was running in privilege level 3, so,
any attempt to reach a segment which its selectors RPL is larger than
CPL should be denied, in other words, the kernel should not reach
privileged segments in behalf of process X. The x86 instruction arpl

can be used by the kernel’s code to change the RPL of the segment
selector that has been requested by less-privileged code to access to
the privilege level of the caller, as in the example of process X.

2.6 x86 run-time stack

A user application starts its life as a file stored in user’s hard disk, at
this stage it does nothing, it is just a bunch of binary numbers that
represent the machine code of this application, when the user decides
to use this application and opens it, the operating system loads this
application into the memory and in this stage this user application
becomes a process, we mentioned before that the term “process” is
used in operating systems literature to describe a running program,
another well-known term is task which is used by Linux kernel and
has the same meaning.

Typically, the memory of a process is divided into multiple regions
and each one of them stores a different kind of application’s data,
one of those regions stores the machine code of the application in the
memory, there are also two important regions of process’ memory,
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the first one is known as run-time heap (or just heap for short) which
provides an area for dynamically allocated objects (e.g. variables), the
second one is known as run-time stack (or stack for short), it’s also
known as call stack but we are going to stick to the term run-time stack
in our discussions. Please note that the short names of run-time stack
(that is, stack) and run-time heap (that is, heap) are also names for
data structures. As we will see shortly, a data structure describes a
way of storing data and how to manipulate this data, while in our
current context these two terms are used to represent memory regions
of a running process although the stack (as memory region) uses stack
data structure to store the data. Due to that, here we use the more
accurate term run-time stack to refer the memory region and stack to
refer the data structure.

Run-time stack is used to store the values of local variables and
function parameters, we can say that the run-time stack is a way to
implement function’s invocation which describes how function A can
call function B, pass to it some parameters, return back to the same
point of code where function A called function B and finally get the
returned value from function B, the implementation details of these
steps is known as calling convention and the run-time stack is one way
of realizing these steps. There are multiple known calling conventions
for x86, different compilers and operating systems may implement
different calling conventions, we are not going to cover those different
methods but what we need to know that, as we said, those different
calling conventions use the run-time stack as a tool to realize function’s
invocation. The memory region in x86 which is called run-time stack
uses a data structure called stack to store the data inside it and to
manipulate that data.

2.6.1 The Theory: Stack Data Structure

Typically, a data structure as a concept is divided into two components,
the first one is the way of storing the data in a high-level terms, a
data structure is not concerned about how to store the data in low-
level (e.g as bits, or bytes. In the main memory or on the disk, etc.).
But it answers the question of storing data as a high-level concept
(as we will see in stack example) without specifying the details of
implementation and due to that, they are called abstract data structures.
The second component of a data structure is the available operations
to manipulate the stored data. Of course, the reason of the existence
of each data structure is to solve some kind of problem.

In stack data structure, the data will be stored in first-in-last-out
(FILO) manner 28, that is, the first entry which is stored in the stack
can be fetched out of the stack at last. The operations of stack data

28 On contrary, queue data structure stores data in first-in-first-out (FIFO) manner.
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Figure 10: A Stack with Two Values A and B Pushed Respectively.

Figure 11: A Stack with Three Values A, B and C Pushed Respectively.

structure are two: push and pop 29, the first one puts some value on
the top of the stack, which means that the top of stack always contains
the last value that have been inserted (pushed) into a stack. The latter
operation pop removes the value which resides on the top of the stack
and returns it to the user, that means the most recent value that has
been pushed to the stack will be fetched when we pop the stack.

Let’s assume that we have the string ABCD and we would like to
push each character separately into the stack. First we start with the
operation push A which puts the value A on the top of the stack, then
we execute the operation push B which puts the value B on top of the
value A as we can see in the figure 10, that is, the value B is now on the
top of the stack and not the value A, the same is going to happen if
we push the value C next as you can see in the figure 11 and the same
for the value of D and you can see the final stack of these four push
operations in figure 12.

Now let’s assume that we would like to read the values from this
stack, the only way to read data in stack data structure is to use the
operation pop which, as we have mentioned, removes the value that
resides on the top of the stack and returns it to the user, that is, the
stack data structure in contrary of array data structure 30 doesn’t have
the property of random access to the data, so, if you want to access any

29 That doesn’t mean no more operations can be defined for a given data structure in the
implementation level. It only means that the conceptual perspective for a given data
structure defines those basic operations which reflect the spirit of that data structure.
Remember that when we start to use x86 run-time stack with more operations than
push and pop later, though those other operations are not canonical to the stack data
structure, but they can be available if the use case requires that (and yes they may
violate the spirit of the given data structure! We will see that later).

30 Which is implemented by default in most major programming languages and know
as arrays (in C for example) or lists (as in Python)
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Figure 12: A Stack with Four Values A, B, C and D Pushed Respectively.

data in the stack, you can only use pop to do that. That means if you
want to read the first pushed value to the stack, then you need to pop

the stack n times, where n is the number of pushed elements into the
stack, in other words, the size of the stack.

In our example stack, to be able to read the first pushed value which
is A you need to pop the stack four times, the first one removes the
value D from the top of stack and returns it to the user, which makes
the values C on the top of stack as you can see in figure 11 and if we
execute pop once again, the value C will be removed from the top of
the stack and returns it to the user, which makes the value B on the
top of the stack as you can see in figure 10, so we need to pop the stack
two times more the get the first pushed value which is A. This example
makes it obvious for us why the stack data structure is described as
first-in-last-out data structure.

The stack data structure is one of most basic data structures in
computer science and there are many well-known applications that
can use stack to solve a specific problem in an easy manner. To take
an example of applications that can use a stack to solve a specific
problem let’s get back to our example of pushing ABCD into a stack,
character by character and then popping them back, the input is ABCD

but the output of pop operation is DCBA which is the reverse string of
the input, so, the stack data structure can be used to solve the problem
of getting the reversed string of an input by just pushing it into a stack
character by character and then popping this stack, concatenating
the returned character with the previously returned character, until
the stack becomes empty. Other problems that can be solved easily
with stack are palindrome problem and parenthesis matching problem
which is an important one for a part of programming languages’
compilers and interpreters known as parser.

As you can see in this brief explanation of stack data structure,
we haven’t mention any implementation details which means that a
specific data structure is an abstract concept that describes a high-level
idea where the low-level details are left for the implementer.
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2.6.2 The Implementation: x86 Run-time Stack

Now, with our understanding of the theoretical aspect of stack data
structure, let’s see how the run-time stack is implemented in x86

architecture to be used for the objectives that we have mentioned in
the beginning of the subsection. As we have said earlier, the reason
of x86 run-time stack’s existence is to provide a way to implement
function’s invocation, that is, the lifecycle of functions. Logically, we
know that a program consists of multiple functions (or routines which
is another term that is used to describe the same thing) and when
executing a program (a process), a number of these functions (not
necessarily all of them) should be called to fulfill the required job.

In run-time context, a function B starts its life when it’s called by
another function A, so, the function A is the caller, that is, the function
that originated the call, and the function B is the callee. The caller can
pass a bunch of parameters to the callee which can reach the value
of these parameters while it’s running, the callee can define its own
local variables which should not be reached by any other function,
that means that these variables can be removed from the memory
once the callee finishes its job. When the callee finishes its job, it may
return some value to the caller 31. Finally, the run-time platform (the
processor in the case of compiled languages) should be able to know,
when the callee finishes, where is the place of the code that should be
executed next, and logically, this place is the line in the source code of
the caller function which is next to the line that called the callee in the
first place.

In x86, each process has its own run-time stack 32, we can imagine
this run-time stack as a big (or even small, that depends on practical
factors) memory region that obeys the rules of stack data structure.
This run-time stack is divided into multiple mini-stacks, more formally,
these mini-stacks are called stack frames. Each stack frame is dedicated
to one function which has been called during the execution of the
program, once this function exists, its frame will be removed from the
larger process stack, hence, it will be removed from the memory.

The x86 register EBP (which is called the stack frame base pointer)
contains the starting memory address of the current stack frame, and
the register ESP (which is called the stack pointer) contains the memory
address of the top of the stack. To push a new item into the run-time
stack, an x86 instruction named push can be used with the value of the
new item as an operand, this instruction decrements the value of ESP
to get a new starting memory location to put the new value on and to

31 Some programming languages, especially those which are derived from Algol differ-
entiate between a function which should return a value to the caller, and a procedure
which shouldn’t return a value to the caller.

32 We claim that for the purpose of explanation. But actually the matter of separated
run-time stack for each process is a design decision that the operating system’s kernel
programmer/designer is responsible for.
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keep ESP pointing to the top of the stack, decrementing the value of
ESP means that the newly pushed items are stored in a lower memory
location than the previous value and that means the run-time stack in
x86 grows downward in the memory.

When we need to read the value on the top of the stack and removes
this value from the stack, the x86 instruction pop can be used which
is going to store the value (which resides on the top of stack) on the
specified location on its operand, this location can be a register or a
memory address, after that, pop operation increments the value of ESP,
so the top of stack now refers to the previous value. Note that the pop

instruction only increments ESP to get rid of the popped value and
don’t clear it from memory by, for example, writing zeros on its place
which is better for the performance, and this is one of the reasons
when you refer to some random memory location, for example in
C pointers, and you see some weird value that you probably don’t
remember that you have stored it in the memory, once upon a time,
this value may have been pushed into the run-time stack and its
frame has been removed. This same practice is also used in modern
filesystems for the sake of performance, when you delete a file the
filesystem actually doesn’t write zeros in the place of the original
content of the file, instead, it just refer to its location as a free space in
the disk, and maybe some day this location is used to store another
file (or part of it), and this is when the content of the deleted file are
actually cleared from the disk.

Let’s get back to x86 run-time stack. To make the matter clear in how
push and pop work, let’s take an example. Assume that the current
memory address of the top of stack (ESP) is 102d and we executed the
instruction push A where A is a character encoded in UTF-16 which
means its size is 2 bytes (16 bits) and it is represented in hexadecimal
as 0x0410, by executing this push instruction the processor is going to
subtract 2 from ESP (because we need to push 2 bytes into the stack)
which gives us the new memory location 100d, then the processor
stores the first byte of UTF-16 A (0x04) in the location 100d and the
second byte (0x10) in the location 101d 33, the value of ESP will be
changed to 100d which now represents the top of the stack.

When we need to pop the character A from the top of the stack, both
bytes should be read and ESP should be incremented by 2. In this case,
the new memory location 100d can be considered as a starting location
of the data because it doesn’t store the whole value of A but a part
of it, the case where the new memory location is not considered as
starting memory location is when the newly pushed values is pushed
as whole in the new memory location, that is, when the size of this
value is 1 byte.

33 In fact, x86 is little-endian architecture which means that 0x10 will be stored in the
location 100d while 0x04 will be stored in the location 101d but I’ve kept the example
in the main text as is for the sake of simplicity.
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Figure 13: Run-time Stack Before Jumping to Function B Code

2.6.3 Calling Convention

When a function A needs to call another function B, then as a first step
A (the caller) should push into the stack the parameter that should
be passed to B (the callee), that means the parameters of B will be
stored on the stack frame of A, when pushing the parameters, they
are pushed in a reversed order, that is, the last parameter is pushed
first and so on. Then the x86 instruction call can be used to jump
to function B code. Before jumping to the callee code, the instruction
call pushes the current value of EIP (this is, the returning memory
address) onto the stack, at this stage, the value of EIP is the memory
address of the instruction of A which is right after call B instruction,
pushing this value into the stack is going to help the processor later
to decide which instruction of the running code should be executed
after the function B finishes. Now, assume that the function B receives
three parameters p1, p2 and p3, the figure 13 shows the run-time stack
at the stage where call instruction has been performed its first step
(pushing EIP). Also, the following assembly code shows how A pushes
the parameters then calls B, as you can see, after B finishes and the
execution of A resumes, the value of EAX is moved to ECX and this line
is just an example and not a part of calling convention.

1 A:

2 ; A’s Code Before Calling B

3

4 push p3

5 push p2

6 push p1

7 call B

8 mov ecx, eax

9

10 ; Rest of A’s Code

When the processor starts executing function B, or any other func-
tion, it’s the job of the function to create its own stack frame, therefore,
the first piece of any function’s code should be responsible for creating
a new stack frame, this happens by moving the value of ESP (the mem-
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Figure 14: Run-time Stack After Jumping to Function B Code and Creating
B’s Stack Frame

ory address of the top of stack) to the register EBP, but before that,
we should not lose the previous value of EBP (the starting memory
address of the caller’s stack frame), this value will be needed when
the callee B finishes, so, the function B should push the value of EBP
onto the stack and only after that it can change EBP to the value of ESP
which creates a new stack frame for function B, at this stage, both EBP

and ESP points to the top of the stack and the value which is stored
in the top of the stack is memory address of the previous EBP, that
is, the starting memory location of A’s stack frame. Figure 14 shows
the run-time stack at this stage. The following code shows the initial
instructions that a function should perform in order to create a new
stack frame as we just described.

1 B:

2 push ebp

3 mov ebp, esp

4

5 ; Rest of B’s Code

Now, the currently running code is function B with its own stack
frame which contains nothing. Depending on B’s code, new items
can be pushed onto the stack, and as we have said before, the local
variables of the function are pushed onto the stack by the function
itself, as you know, x86’s protected mode is a 32-bit environment, so,
the values that are pushed onto the stack through the instruction push

are of size 4 bytes (32 bits).
Pushing a new item will make the value of ESP to change, but EBP

remains the same until the current function finishes its work, this will
make EBP too useful when we need to reach the items that are stored
in previous function’s stack frame (in our case A), for example, the
parameters or even the items that are in the current function’s stack
frame but are not in the top of the stack, as you know, in this case
pop cannot be used without losing other values. Instead, EBP can be
used as a reference to the other values. Let’s take an example of that,
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given the run-time stack in figure 14 assume that function B needs
to get the value of p1, that can be achieved by reading the memory
location of the memory address EBP + 8. As you can see from the
figure, memory address of EBP points to the previous value of EBP
which its size is 4 bytes, so if we add 4 to the value in EBP, that is,
EBP + 4 we will get the memory address of the location which stores
the resume point (EIP before calling B) which also has the size of 4
bytes, so, if we add another 4 bytes to EBP we will reach the item which
is above the resume point, which will always (because the convention
always work the same way with any function) be the first parameter
if the current function receives parameters, and by adding another
4 to EBP we will get the second parameter and so on. The same is
applicable if we would like to read values in current function’s stack
frame (e.g. local variables), but this time we need to subtract from EBP

instead of adding to it. Whether we are adding to or subtracting from
EBP the value will always be 4 and its multiples since each item in x86

protected-mode run-time stack is of 4 bytes. The following assembly
example of B reads multiple values from the stack that cannot be read
with normal pop without distorting the stack.

1 B:

2 ; Creating new Stack Frame

3 push ebp

4 mov ebp, esp

5

6 push 1 ; Pushing a local variable

7 push 2 ; Pushing another local variable

8

9 ; Reading the content

10 ; of memory address EBP + 4

11 ; which stores the value of

12 ; the parameters p1 and moving

13 ; it to eax.

14 mov eax, [ebp + 8]

15

16 ; Reading the value of the

17 ; first local varaible and

18 ; moving it to ebx.

19 mov ebx, [ebp - 4]

20

21 ; Rest of B’s Code

When B finishes and needs to return a value, this value should be
stored in the register EAX. After that, B should deallocates its own stack
frame, this task can be accomplished easily by popping all values of
B’s stack frame until we reach to first value pushed value by B (the
starting memory address of the caller A stack frame) which should
be set to EBP in order to restore the stack frame of A as the current
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stack frame. After that, the top of the stack contains the returning
memory address which should be loaded to EIP so we can resume
the execution of the caller A, that’s can be done by using the x86

instruction ret which pops the stack to get the returning address then
loads EIP with this value. Finally, when A gains the control again
it can deallocate the parameters of B to save some memory by just
popping them. The method that we have described to deallocate the
whole stack frame or deallocate the parameters is the standard way
that’s not widely used practically for multiple reasons, one of these
reasons is that pop needs a place to store the popped value, this place
can be a register or a memory location, but what we really need is to
get rid of these values, so, storing them in another place is a waste of
memory. In order to explain the other way of deallocating some items
from the stack consider the following code:

1 sub esp, 4

2 mov [esp], 539

This code is equivalent to push 539, it does exactly what push does,
first it subtract 4 bytes from top of stack’s memory address to get a
new memory location to store the new value in, then, it stores the
value in this location. The reverse operation is performed with pop as
the following which is equivalent to pop eax.

1 mov eax, [esp]

2 add esp, 4

As you can see, to get rid of the popped value, only top of stack’s
memory address has been changed. Since every item on the stack
is of size 4 bytes, then adding 4 to ESP makes it point to the item
which is exactly above the current one in the stack. So, if we need to
get rid of the value on the top of stack without getting its value and
storing it somewhere else, we can simply use the following instruction
add esp, 4. What if we want to get rid of the value on the top of the
stack and the value before it? The total size of both of them is 8 bytes,
so, add esp, 8 will do what we want. This technique is applicable for
both deallocating B’s stack frame and its parameters from A’s stack
frame. For the former, there is a yet better technique. In order to
deallocate the stack frame of the current function we can simply do
the following: mov esp, ebp, that is, move the memory address of
EBP to ESP, which was the state when the callee B just started. The
following is the last part of B which deallocates its own stack frame
and return to A.

1 B:

2 ; Previous B’s Code:

3 ; Creating new Stack Frame

4 ; Pushing Local variable

5 ; The Rest of Code

6
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Figure 15: An Example of a Run-Time Stack with Three Items

7 ; Make to the of stack points

8 ; to the first value pushed

9 ; by the function "B".

10 mov esp, ebp

11

12 ; Pop the current top of

13 ; stack and put the value

14 ; in "EBP" to make A’s

15 ; stack frame as the current.

16 pop ebp

17

18 ; Jump the the resume point.

19 ret

The details of calling a function that we have just described are
implementation details and we mentioned previously that these
implementation details of function’s invocation are known as calling
conventions. The calling convention that we have described is known
as cdecl which stands for C declaration, there are other conventions,
which means the one which we have described is not an strict standard
for x86 architecture, instead, the operating systems, compilers and
low-level code writers can decide which calling convention that they
would like to use or maybe make up a wholly new one according to
their objective. However, the reason behind choosing cdecl to explain
here is that it is a well-known and widely used calling convention,
also, it serves our purpose of explaining the basics of x86 run-time
stack.

2.6.4 Growth Direction of Run-time Stack

When we explained how x86 instructions push and pop work, we have
claimed that the x86 run-time stack grows downward, so, what does
growing downward or upward exactly means? Simply, when we said
that x86 run-time stack grows downward we meant the the older
items of stack are pushed on larger memory addresses while the most
recent ones are pushed onto smaller memory addresses. For example,
starting from the memory address 104d, let’s assume we have pushed
the value A after that we pushed the value B, then A’s memory location
will be 104d while B’s memory location will be 100d, so the new values
will always be pushed on the bottom of the old ones in the memory.
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Figure 16: A New Item Pushed Into a Stack that Grows Downward

What makes we claim that, for instance, the address 100d is at the
bottom of 104d instead of the other way around is how we visualize
the run-time stack inside the main memory. Let’s look at the figure
15 which shows a run-time stack that contains three items M, R and A

and all of them are of 4 bytes, on the right side of the figure we can
see the starting memory address of each item. As we can see, in this
visualization of the run-time stack, the smaller memory addresses are
on the bottom and the larger memory addresses are on the top.

From the figure we can see that the value of ESP is 8d 34, let’s assume
that we would like to run the instruction push C on this run-time stack,
as we have mentioned before, the instruction push of x86 is going to
decrease the value of ESP by a size decided by the architecture (4
bytes in our case) in order to get a new starting memory address for
the new item. So, push is going to subtract 4d (The size of pushed
item C in bytes) from 8d (current ESP value) which gives us the new
starting memory location 4d for the item C. If we visualize the run-
time stack after pushing C it will be the one as on figure 16 and we
can see, depending on the way of push instruction works, that the
stack grew downwards by pushing the new item C on the bottom. So,
according to this visualization of run-time stack, which puts larger
memory addresses on the top and smaller on the bottom, we can say
x86 run-time stack grows downward by default.

This visualization is just one way to view how the run-time stack
grows, which means they may be other visualizations, and the most
obvious one is to reverse the one that we just described by putting the
smaller addresses on the top and the larger addresses on the bottom
as shown in figure 17, you can note that in contrast to figure 16 the
smallest address 4d is on top, so, based on this visualization the stack
grows upward! Actually this latter visualization of run-time stack
is the one which is used in Intel’s manual and the term expand-up is
the term that is used in the manual to describe the direction of stack
growth.

To sum it up, the direction in which the run-time stack grows (down
or up) depends on how do you visualize the run-time stack, as in
figure 16 or as in figure 17. In our discussion in this book we are going

34 As a reminder, don’t forget that all these memory address are actually offsets inside
a stack segment and not a whole memory address.
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Figure 17: A Stack that Grows Upward Instead of Downward

to depend on the first visualization35, so, simply, the run-time stack of
x86 grows downward.

2.6.5 The Problem of Resizing the Run-time Stack

We have emphasized that x86 run-time stack by default grows down-
ward, this default behavior can be changed if we wish to, which is
going to make the run-time stack to grow upwards instead and the
way to do that is to use expansion-direction flag of run-time stack’s
segment descriptor, we have mentioned this flag when explained the
structure of segment descriptor and postponed its details till here.

When we want the run-time stack to grow downward (or in Intel’s
term which depends on the second visualization of run-time stack:
expand-up) the value of this flag should be 0, on the other hand,
when we want the run-time stack to grow upward (in Intel’s term:
expand-down) the value of this flag should be 1. Modern operating
systems use the default behavior (downward growth), we will see that
this design decision is taken due to the choice of flat memory model
by modern operating systems. However, the other available option
(upward growth) is there to solve a potential problem and whether
this problem is going to show up in a specific kernel depends on how
this kernel’s architecture is designed, that is, which memory model is
used in this kernel.

This problem, which we can solve by making the run-time stack
grows upward instead of downward, is related to the need of increas-
ing the size of run-time stack and the fact that the run-time stack
stores memory addresses 36 on it. Let’s assume that our kernel created
a new stack segment for a specific process X and this stack segment
has a fixed size which is 50 bytes 37 for example. The process X starts
its work and at some point of time its run-time stack of size 50 bytes
becomes full which means that we need to resize it and make it bigger
so it can hold more items, let’s assume the new size will be 60 bytes.

35 And many other books actually uses the first visualization as I recall and for that I
chose it in this book. And according to my best knowledge the only reference that
I’ve seen that depends on the second visualization is Intel’s manual.

36 The previous values of EBP and EIP. Also the application programmer may store
memory addresses of local variables in the stack (e.g. by using pointers in C).

37 As you may recall, the size of the segment can be decided by the base address of the
segment and its limit as specified in the segment’s descriptor.
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Figure 18: Process X’s Run-time Stack

Figure 19: Process X’s Run-time Stack After Resize (Grows Downward)

Before going any further with our discussion, let’s see the figure
29 which represents a snapshot of process X’s run-time stack when it
became full. We can see from the figure that X’s stack segment starts
from the physical memory address 300d (segment’s base address) and
ends at the physical memory address 250d, also, the items of run-time
stack are referred to based on their offsets inside the stack segment.
We can see that a bunch of values have been pushed onto the stack,
some of those values are shown on the figure and some other are
omitted and replaced by dots which means that there are more values
here in those locations. Normal values are called “some value” in the
figure and the last pushed value in the stack is the value Z. Also, a
value which represents a logical memory address has been pushed
onto the stack, more accurately, this value represents an offset within
the current stack segment, a full logical memory address actually
consists of both offset and segment selector as we have explained
earlier in this chapter when we discussed address translation. But for
the sake of simplicity, we are going call this stored value as “memory
address” or “memory location” in our current explanation. As we
explained earlier, all memory addresses that the processes work with
are logical and not physical. The value 26d is a local variable P of the
type pointer (as in C) which points to another local variable R that has
the value W and is stored in the memory location 26d.

Figure 19 shows X’s stack after resize, as you can see we have got our
new free space of 10 bytes, also, because the stack grows downward so
the new free space should be added on the bottom of the stack to be
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Figure 20: Process X’s Run-time Stack (Grows Upward)

useful which means the previous offsets should be changed, therefore,
the largest offset 50d has been updated to 60d by adding 10d (which
is the newly added free space to the stack in bytes) to it and so on
for the rest of offsets, also, ESP has been simply updated in the same
manner.

Now we can see that the process of updating the offsets, that we are
forced to perform because the stack grows downward, has caused a
problem in the offsets which have been pushed onto the stack before
resizing it. You can see the pointer P which still has the original value
26d, that means it doesn’t point the the variable R anymore, instead it
is going to point to another memory location now with a value other
than W, and the same problem holds for all pushed EBP values on X’s
stack.

A potential solution for this problem is to update all stack items that
contain memory addresses in the range of the stack after resizing it,
exactly as we have done with EBP, but more simpler solution is to make
the stack to grow upwards instead of downwards! Modern operating
systems solves this problem by not dividing the memory into segments
but they use flat memory model which views the memory as one big
segment for all data, code and stacks.

Now let’s see what happens in the same scenario but with changing
the growth direction of the stack from downward which caused the
problem to upwards. In this case, as we have said before, the new
items will be stored on the larger memory addresses (offsets to be
more accurate). Figure 20 shows the same snapshot of X’s run-time
of stack as in the one of figure 29 but this time it grows upwards
instead of downward. You can notice that the older values are now on
the bottom of the stack, that is, on smaller memory addresses, what
interests us in this stack is the entry which stores the memory address
20d that points to the memory location which has the value W and it is
the one which caused the problem in the first place. When the stack
was growing downward, the memory location of the value W was 26d,
but this time it is 20d. So, what happens when we need to resize this
run-time stack?

In the same way of the previous one, the limit of the stack (its
largest offset) will be increased from 50d to 60d as shown in figure
21, but in contrast to the previous one, we don’t need to update the
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Figure 21: Process X’s Run-time Stack (Grows Upward) Resized

value of ESP anymore, because as you can see from the two figures
20 and 21 the memory address 50d represents the top of the stack on
both stacks. The same holds true for the stack item which stores the
memory address 20d, we don’t need to update it because the value W

is still on the same memory address (offset) and can be pointed to by
the memory address 20d. So, we can say that deciding the direction of
run-time stack growth to be upward instead of downward can easily
solve the problem of getting wrong stored memory address after
resizing the run-time stack 38 and that’s when we use segmentation as
a way of viewing the memory.

2.7 x86 interrupts

Event-driven programming is a common programming paradigm that
is used in many areas of programming. One of these areas is graphical
user interface (GUI) programming, also, it is common in game devel-
opment, furthermore, some network programming frameworks use
this paradigm. In this paradigm, the program is driven by events, that
is, it keeps idle and waiting for any even to occur and once an event
occurs the program starts to work by handling this event, for example,
a mouse click is considered as an event in GUI programming. When
an event occurs, the program handles this event through, usually, a
separated function which is dedicated for this event, this function is
known as a handler. In GUI programming for example, when the user
clicks on a specific button, that is, when this event occurs, a function
specified for this event on this button (the handler) is called to perform
some operation after this click, such as, save a document or close the
application.

This paradigm is also used by x86. When a process is running,
something can interrupt (an event occurred) the processor which is
going, in this case, to stop the execution of the current process tem-
porarily, and call the suitable interrupt handler (also called interrupt
service routine) to handle the current interrupt, after handling the inter-

38 Actually, the well-know stack overflow vulnerability in x86 is also caused by stack
growing downward and can be avoided easily in growing upwards stacks!
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rupt, the processor can resume the process which was running before
the interrupt occurred.

One example of the usage of interrupts in this low-level environment
is the system timer. In the hardware level, there could be a system
timer which interrupts the processor in each X period of time and
this type of interrupt is the one that makes multitasking possible in
uniprocessor systems. When a processor is interrupted by the system
timer, it can call the kernel which can change the currently running
process to another one; this operation known as scheduling which its
goal is distributing the time of the processor to the multiple processes
in the system.

Another example of using interrupts is when the user of an op-
erating system presses some keys on the keyboard, these events of
pressing keyboard keys should be sent to the kernel which is going to
delegate the device driver 39 of the keyboard to handle these events in a
proper way, in this case, with each key press, the keyboard is going to
interrupt the processor and request to handle these events.

In x86, both hardware and software can interrupt the processor,
system timer and keyboard are examples of hardware interrupts while
the software interrupt can occur by using the x86 instruction int which
we have used when we wrote our bootloader, the operand of this
instruction is the interrupt number, for example, in our bootloader
we have used the following line int 10h, in this case, the interrupt
number is 10h (16d) and when the processor is interrupted by this
instruction, it is going to call the handler of interrupt number 10h.
Software interrupt can be used to implement what is known as system
calls which provide a way for user applications to call a specific
kernel’s code that gives the applications some important services such
as manipulating the filesystem (e.g. reading or writing files, create
new file or directories, etc.) or creating new process and so on in a
way that resembles the one that we used to call BIOS services.

In addition to interrupts, exceptions can be considered as another
type of events which also stop the processor from its current job
temporarily and make it handle it and then resume its job after that.
The main difference between exceptions and interrupts in x86 is that
the former occurs when an error happens in the environment, for
example, when some code tries to divide some number by zero, an
exception will be generated and some handler should do something
about it, we can perceive the exceptions of x86 as the exceptions of
some programming languages such as C++ and Java.

39 That’s why in some kernel’s designs, especially, monolithic kernel keeps the device
drivers as a part of the kernel.
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Figure 22: Gate Descriptor Structure for Interrupt and Trap Gates

2.7.1 Interrupt Descriptor Table

In x86, there is a table known as interrupt descriptor table (IDT), also
may called interrupt vector table but the term that Intel uses is the
former one while the latter are used to describe this kind of tables as
a concept in some works of literature and not the name of the table
on a specific architecture. IDT resides in the memory and tells the
processor how to reach to the handler of a given interrupt number.
The entries of IDT are known as gate descriptors and the size of each
one of them is 8 bytes same as GDT and LDT. At most, IDT can contain
256 gate descriptors and the base memory address of IDT is stored in
a special register known as IDTR.

The gate descriptors in the IDT table can be of three types, task gate,
interrupt gate and trap gate, our focus currently will be on the latter
two. The structure of both interrupt and trap gate descriptor is shown
in figure 22. As we have said earlier, a gate descriptor of the IDT

should point to the memory address of the interrupt handler’s code.
We can see in the figure that bytes 2 and 3 should contain a segment
selector, which is the segment selector of handler’s code, that is, the
index of the code segment that contains handler’s code, we can see
an important difference between GDT and IDT here. In the former the
base address of a segment is a linear address, while the base address
of the handler is a logical address.

The offset of the first handler’s instruction should be set in the
descriptor, this will be useful if the handler’s code is just a part of the
whole code segment which is presented in the segment selector field.
The offset in the gate descriptor is divided into two parts, the least
significant2 bytes of the offset should be loaded into bytes 0 and 1 of
the descriptor, while the most significant2 bytes of the offset should
be loaded into bytes 6 and 7.

The least significant nibble of byte 4 is reserved and the most
significant nibble of byte 4 should always be 0d. The most significant
bit of byte 5 is present flag (P flag), when its value is 0 that means
the code that this descriptor is pointing to is not loaded into memory,
while the value 1 means otherwise. The descriptor privilege level field
(DPL) contains the privilege level of the handler, it occupies the second
and third least significant bit of byte 5. The value of fourth, sixth and
seventh least significant bits of byte 5 should always be 0b, 1b and
1b respectively. The flag which is called D in the figure specifies the
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size of the gate descriptor itself whether it is 32 bits, whenD flag = 1,
or 16 bits when D flag = 0, the former should always be our choice
in protected-mode, while the latter should always be our choice in
real-mode. The flag which is called T in the figure specifies whether
the gate is an interrupt gate, when T flag = 0, or the gate is an trap
gate, when T flag = 1.

The difference between interrupt and trap gates is too simple, when
a handler defined as an interrupt gate is called, the processor is going
to disable the ability to signal a new interrupt until the handler returns,
that is, the execution of the handler will not interrupted until it finishes
its job and return to the caller, of course there are some exceptions, a
type of interrupts known as non-maskable interrupts (NMI) will interrupt
the execution of the current code even if the interruption is disabled,
non-maskable interrupts occur when some catastrophic event (from
the hardware perspective) happens in the system. On the other hand,
the handler that is defined as a trap gate can be interrupted by any
new interrupt, that is, the interruption will not be disabled by the
processor.

However, disabling interruption is an operation that can be per-
formed by the code by using the x86 instruction cli (still, non-
maskable interrupts are excepted) which stands for clear interrupt
flag and can be enabled again by using the instruction sti which
stands for set interrupt flag, both of these instructions manipulate the
value of interrupt flag which is a part of the register EFLAGS.

Now, let’s assume that we have defined a gate descriptor for a
handler, let’s name it A. The question is, which interrupt the handler A
is going to handle? In other words, for which interrupt number the
processor is going to call the code of A to handle the interrupt? In fact,
that depends on the index of A’s gate descriptor in the IDT table. Let’s
assume that the index is 0d, then A’s code will be called when the
interrupt number 0 is signaled, that means the term interrupt number
is a synonym for entry’s index number in IDT table

In protected-mode, interrupt numbers, that is IDT entries indices,
from 0 to 21 have specific meaning defined by x86 architecture itself,
for example, the interrupt number that is reserved for division by
zero exception is the interrupt number 0 and, in our example, the
code of A will be called when some other code divides a number by
zero. Beside interrupt numbers 0 to 21, the range of interrupts number
from 22 to 31 are reserved, and the interrupt numbers from 32 to 255

are available for the system programmer to decide their meanings,
however, not all of their descriptors should be filled, only the needed
ones will be enough.

The Register IDTR

In same way as GDT, we should tell the processor where the IDT reside
in the memory and that can be performed by the instruction lidt
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which stands for load IDT, this instructions works as lgdt, it takes an
operand and loads it to the register IDTR which will be used later by
the processor to reach to the IDT table.

The structure of IDTR is same as GDTR, its size is 48 bits and it’s
divided into two parts, the first part represents the size of the IDT in
bytes, that is, the IDT’s limit, this field starts from bit 0 of IDTR and
ends at bit 15. Starting from bit 16 up to bit 47 the base linear address
40 where IDT is reside should be set.

40 As we have mentioned multiple time that in our current case, where the paging is
disabled, a linear address is same as physical address.
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3.1 introduction

Till the point, we have created a bootloader for 539kernel that loads
a simple assembly kernel from the disk and gives it the control. Fur-
thermore, we have gained enough knowledge of x86 architecture’s
basics to write the progenitor of 539kernel which is, as we have said,
a 32-bit x86 kernel that runs in protected-mode. In x86, to be able
to switch from real-mode to protected-mode, the global descriptor
table (GDT) should be initialized and loaded first. After entering the
protected mode, the processor will be able to run 32-bit code which
gives us the chance to write the rest of kernel’s code in C and use
some well-known C compiler (We are going to use GNU GCC in this
book) to compile the kernel’s code to 32-bit binary file. When our
code runs in protected-mode, the ability of reaching BIOS services will
be lost which means that printing text on the screen by using BIOS
service will not be available for us, although the part of printing to
the screen is not an essential part of a kernel, but we need it to check
if the C code is really running and that’s by printing some text once
the C code gains the control of the system. Instead of using BIOS to
print texts, we need to use the video memory to achieve this goal in
protected mode which introduces us to a graphics standard known as
video graphics array (VGA).

The final output of this chapter will be the progenitor of 539kernel
which has a bootloader that loads the kernel which contains two parts,
the first part is called starter which is written in assembly and will
be represented by a file called starter.asm, this part initializes and
loads the GDT table, then it is going to change the operating mode
of the processor from real-mode to protected-mode and finally it
is going to prepare the environment for the C code of the kernel
which is the second part (we are going to call this part the main kernel
code or main kernel in short) that will be represented by a file called
main.c it is going to gain the control from the starter after the latter
finishes its work. In this early stage, the C code will only contains an
implementation for print function and it is going to print some text
on the screen, in the later stages, this part will contain the main code
of 539kernel.
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3.2 the basic code of the progenitor

In this section we are going to start writing the most of 539kernel’s
progenitor code but one part which is related to the interrupts that will
be examined in another section in this chapter. To be able to compile
and run the code that we write in this section you need to update the
Makefile of 539kernel, the changes of Makefile also will be examined
in another section in this chapter. The following is the Makefile which
presumes that both starter.asm and main.c are available.

1 ASM = nasm

2 CC = gcc

3 BOOTSTRAP_FILE = bootstrap.asm

4 INIT_KERNEL_FILES = starter.asm

5 KERNEL_FILES = main.c

6 KERNEL_FLAGS = -Wall -m32 -c -ffreestanding

-fno-asynchronous-unwind-tables -fno-pie

7 KERNEL_OBJECT = -o kernel.elf

8

9 build: $(BOOTSTRAP_FILE) $(KERNEL_FILE)

10 $(ASM) -f bin $(BOOTSTRAP_FILE) -o bootstrap.o

11 $(ASM) -f elf32 $(INIT_KERNEL_FILES) -o starter.o

12 $(CC) $(KERNEL_FLAGS) $(KERNEL_FILES) $(KERNEL_OBJECT)

13 ld -melf_i386 -Tlinker.ld starter.o kernel.elf -o 539kernel.elf

14 objcopy -O binary 539kernel.elf 539kernel.bin

15 dd if=bootstrap.o of=kernel.img

16 dd seek=1 conv=sync if=539kernel.bin of=kernel.img bs=512 count=5

17 dd seek=6 conv=sync if=/dev/zero of=kernel.img bs=512 count=2046

18 qemu-system-x86_64 -s kernel.img

As you can see, a linker ld is now used to group the object files
which has been generated from the compiler and the assembler. The
linker needs a script which tells it how to organize the content of the
binary file 539kernel.elf that will be generated by the linker. The
name of the file should be linker.ld as it’s shown in the arguments
of the command. The following is the content of this file 1.

1 SECTIONS

2 {

3 .text 0x09000 :

4 {

5 code = .; _code = .; __code = .;

6 *(.text)

7 }

8

1 The script is based on the one which is provided in “JamesM’s kernel development tu-
torials” (http://www.jamesmolloy.co.uk/tutorial_html/1.-Environment%20setup.
html)

http://www.jamesmolloy.co.uk/tutorial_html/1.-Environment%20setup.html
http://www.jamesmolloy.co.uk/tutorial_html/1.-Environment%20setup.html
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9 .data :

10 {

11 data = .; _data = .; __data = .;

12 *(.data)

13 *(.rodata)

14 }

15

16 .bss :

17 {

18 bss = .; _bss = .; __bss = .;

19 *(.bss)

20 }

21

22 end = .; _end = .; __end = .;

23 }

The bootloader also should be modified to make the progenitor code
works. In the previous version of the bootloader, we were loading
only one sector from the disk (remember, the size of a sector is 512

bytes) to memory, and that was more than enough for simple code
such as simple_kernel.asm of chapter 1. In most practical cases, the
size of the kernel will be more than one sector and the 539kernel’s
progenitor is not an exception, therefore, the bootloader should load
more than one sector in order to load the whole code of the kernel.
First we need to add two new data labels in the bootloader, say below
the definition of the label load_error_string, as the following.

1 number_of_sectors_to_load db 15d

2 curr_sector_to_load db 2d

The first one, as it is obvious from its name, indicates the number
of sectors that we would like our bootloader to load from the disk, the
current value is 15d, which means 7.5KB from the disk will be loaded
to the memory, if kernel’s binary size becomes larger than 7.5KB we
can simply modify the value of this label to increase the number of
sectors to load.

The second label indicates the sector’s number that we are go-
ing to load now, as you know, sector 1 of the disk contains the
bootloader (if sector numbering starts from 1), and based on our
arrangement in Makefile of 539kernel, the code of the kernel will
be there starting from sector 2 of the disk, therefore, the initial
value of the label curr_sector_to_load is 2. The modified version
of load_kernel_from_disk which loads more than one sector is the
following.

1 load_kernel_from_disk:

2 mov ax, [curr_sector_to_load]

3 sub ax, 2

4 mov bx, 512d
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5 mul bx

6 mov bx, ax

7

8 mov ax, 0900h

9 mov es, ax

10

11 mov ah, 02h

12 mov al, 1h

13 mov ch, 0h

14 mov cl, [curr_sector_to_load]

15 mov dh, 0h

16 mov dl, 80h

17 int 13h

18

19 jc kernel_load_error

20

21 sub byte [number_of_sectors_to_load], 1

22 add byte [curr_sector_to_load], 1

23 cmp byte [number_of_sectors_to_load], 0

24

25 jne load_kernel_from_disk

26

27 ret

The first difference in this new version of load_kernel_from_disk
is the first 5 lines of this routine. As you may recall, the BIOS service
13h:02h loads the required sector into the memory address es:bx, so,
the value 0900h which has been set to es in the code above will be the
starting memory address of the kernel. In the previous version of the
bootloader it was enough the set 0 to bx since we were loading only
one sector, that means the code will reside from offset 0 to offset 511 of
the segment. Now we are loading more than one sector by executing
load_kernel_from_disk multiple times (number_of_sectors_to_load
times) with different curr_sector_to_load each time, so, if we keep
the value of bx fixed to 0, each sector will overwrite the previously
loaded sector and only the last sector of the kernel will be there in
memory, which is, of course, not what we want. The first five lines
of load_kernel_from_disk ensures that each sector is loaded in the
correct memory location, the first sector is loaded starting from offset
0 ((2 - 2)* 512 = 0), the second sector is loaded starting from offset
512 ((3 - 2)* 512 = 512) and the third sector is loaded starting offset
1024 ((4 - 2)* 512 = 1024).

The second change of the routine is the value that we set to the
register cl. For BIOS’s 13h:02h the value of this register is the sec-
tor number that we would like to load the data from. In the new
version, this value depends on curr_sector_to_load which starts
with 2 and increases by 1 after each sector being loaded. The last
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4 lines before ret ensures that the value of curr_sector_to_load

is being increased to load the next sector from disk in the next it-
eration of the routine, the value of number_of_sectors_to_load is
decreased by 1 after loading each sector and finally the new value of
number_of_sectors_to_load is compared with 0, when it is the case
then the routine load_kernel_from_disk will return, otherwise, the
routine will be called again with the new values for both curr_sector_to_load,
number_of_sectors_to_load to load a new sector and so on.

3.2.1 Writing the Starter

The starter is the first part of 539kernel that runs right after the
bootloader which means that the starter runs in 16-bit real-mode
environment, exactly same as the bootloader, and due to that we are
going to write the starter by using assembly language instead of C
and that’s because most modern C compilers don’t support 16-bit
code. Furthermore, when a specific low-level instruction is needed
(e.g. lgdt), there is no way to call this instruction in native C, instead,
assembly language should be used.

The main job of the starter is to prepare the proper environment
for the main kernel to run in. to do that the starter switches the
current operating mode from the real-mode to protected-mode which,
as we have said earlier, gives us the chance to run 32-bit code. Before
switching to protected-mode, the starter needs to initialize and load
the GDT table and set the interrupts up, furthermore, to be able to use
the video memory correctly in protected-mode a proper video mode
should be set, we are going to discuss the matter of video in more
details later in this chapter. After finishing these tasks, the starter
will be able to switch to protected-mode and gives the control to the
main kernel. Let’s start with the prologue of the starter’s code which
reflects the steps that we have just described.

1 bits 16

2 extern kernel_main

3

4 start:

5 mov ax, cs

6 mov ds, ax

7

8 call load_gdt

9 call init_video_mode

10 call enter_protected_mode

11 call setup_interrupts

12

13 call 08h:start_kernel
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The code of the starter begins from the label start, from now on
I’m going to use the term routine for any callable assembly label 2.
You should be familiar with the most of this code, as you can see,
the routine start begins by setting the proper memory address of
data segment depending on the value of the code segment register
cs 3 which is going to be same as the beginning of the starter’s code.
After that, the four steps that we have described are divided into four
routines that we are going to write during this chapter, these routines
are going to be called sequentially. Finally, the starter preforms a far
jump to the code of the main kernel. But before examining the details
of those steps let’s stop on the first two line of this code that could be
new to you.

1 bits 16

2 extern kernel_main

The first line uses the directive bits which tells NASM that the code
that follows this line is a 16-bit code, remember, we are in a 16-bit

real-mode environment, so our code should be a 16-bit code. You
may wonder, why didn’t we use this directive in the bootloader’s
code? The main reason for that is how NASM works, when you tell NASM
to generate the output in a flat binary format 4, it is going to consider
the code as a 16-bit code by default unless you use bits directive to
tell NASM otherwise, for example bits 32 for 32-bit code or bits 64

for 64-bit code. But in the case of the starter, it is required from NASM

to assemble it as ELF32 instead of flat binary, therefore, the 16-bit

code should be marked from NASM to assemble it as 16-bit code and
not 32-bit code which is the default for ELF32.

The second line uses the directive extern which tells NASM that
there is a symbol 5 which is external and not defined in any place
in the current code (for example, as a label) that you are assembling,
so, whenever the code that you are assembling uses this symbol,
don’t panic, and continue your job, and the address of this symbol
will be figured out later by the linker. In our situation, the symbol
kernel_main is the name of a function that will be defined as a C code
in the main kernel code and it is the starting point of the main kernel.

As I’ve said earlier, the stuff that are related to interrupts will
be examined in another section of this chapter. To get a working
progenitor we are going to define the routine setup_interrupts as an

2 The term routine is more general than the terms function or procedure, if you haven’t
encounter programming languages that make distinctions between the two terms
(e.g. Pascal) then you can consider the term routine as a synonym of the term function
in our discussion.

3 As you know from our previous examination, the value of cs will be changed by the
processor once a far jump is performed.

4 That’s exactly what we have done with bootloader, refer back to chapter 1 and you
can see that we have passed the argument -f bin to NASM.

5 A symbol is a term that means a function name or a variable name.
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empty routine temporarily until we reach the interrupts section. Its
code will be the following.

1 setup_interrupts:

2 ret

Entering Protected-Mode

The code of load_gdt routine is the following.

1 load_gdt:

2 cli

3 lgdt [gdtr - start]

4

5 ret

According to Intel’s x86 manual, it is recommended to disable the
interrupts before starting the process of switching to protected-mode,
so, the first step of load_gdt routine is to disable the interrupts by
using the instruction cli 6.

The second step of load_gdt is setting the value of GDTR register. In
the operand of lgdt in this line you can see two symbols, gdtr and
start. Both of these symbols are labels in the starter code, we have
already defined start as a label for the main routine of the starter,
but the label gdtr is a one that we are going to define later. What you
need to know right now about this label is that it contains the value
that we would like to load into the register GDTR, that is, it contains the
memory address of the 539kernel’s GDT table and the size of the table.

From our previous discussions, you know that when we mention
any label through the assembly code, NASM will substitute it by the
memory address of this label, so, what is going on with the operand
[gdtr - start] of lgdt? And why do we need to subtract the mem-
ory address of the label start from the memory address of label
gdtr?

First we need to understand the meaning of the brackets [] in NASM.
Those brackets are used to refer to the content of a memory address
inside the brackets, for example, assume we have a label named foo

and we store the value bar in this label, inn the same way of the labels
title_string and message_string in the bootloader, then, [foo] in
NASM means take the memory address of foo then get the content
of the memory inside this memory location, the value bar. In other
words, mov eax, foo means put the memory address of the label foo
inside the register eax while mov eax, [foo] means put the value bar

inside the register. This concept is same as the pointers in C, assume
foo is a pointer, then *foo expression is same as mov eax, [foo] while
foo expression is same as mov eax, foo.

6 In fact, cli disables only maskable interrupts, as mentioned before, but I use the
general term interrupts here for the sake of simplicity.
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After this explanation we now know that [gdtr - start] means
subtract the memory address of start from the memory address of
gdtr and use the result as a memory address and take the content
inside it and load that content to the register GDTR, but the current
question is why do we need to perform the subtraction? Isn’t it enough
to just get the memory address of the label gdtr and get its content
and load it into GDTR?

The problem is when we refer to any label, this label will be sub-
stituted with the full memory address of that label, and if we tell
NASM to get the content of the label gdtr through the brackets [gdtr]
a reference to the memory will be issued and as we have said earlier,
with any refer to the memory, the processor, in real-mode, is going
to consult the corresponding segment register, in our case ds, and
consider the referred memory address as an offset inside the segment
which is defined by the segment register instead of considering it as a
full memory address. So, when we refer to the location of the label
gdtr we need to make sure that we are referring to the offset of gdtr
inside our current data segment and not the full memory address,
otherwise, the referred address will not be correct.

To get the offset of gdtr instead of its full memory address we
simply subtract the start memory address of the data segment from
the memory address of gdtr, and we can get this value of that memory
address in many ways, one of them is by referring to the start label
since both CS and DS start in the same place.

Let’s take an example to make the matter of getting the offset of a
label clearer, assume that the memory address of start is 1000d while
the memory address of gdtr is 1050d, based on the beginning code of
start routine, the value of ds will be also1000d, then gdtr - start

= 1050d - 1000d = 50d, when the processor refers to the memory
location by using the starting address of the data segment which
is in ds the final generated address will be ds:(gdtr - start)=

1000d:50d = 1050d which is exactly the same as the memory address
of gdtr.

Now, let’s take a look at the value of the label gdtr. For the sake
of organizing the code, I’ve dedicated a separated file for the values
of gdtr and gdt under the name gdt.asm. To make the starter able
to reach the labels gdtr and gdt which reside in a different assembly
file than starter.asm we can use NASM’s directive %include which
will be substituted with the content of the file which is passed to
this directive, so, in the end of starter.asm we need to add the line
%include "gdt.asm" so the starter can reach gdtr. Now let’s see
content of gdt.asm.

1 gdt:

2 null_descriptor : dw 0, 0, 0, 0

3 kernel_code_descriptor : dw 0xffff, 0x0000, 0x9a00, 0x00cf

4 kernel_data_descriptor : dw 0xffff, 0x0000, 0x9200, 0x00cf
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5 userspace_code_descriptor : dw 0xffff, 0x0000, 0xfa00, 0x00cf

6 userspace_data_descriptor : dw 0xffff, 0x0000, 0xf200, 0x00cf

7

8 gdtr:

9 gdt_size_in_bytes : dw ( 5 * 8 )

10 gdt_base_address : dd gdt

The label gdt is the GDT table of 539kernel, while the label gdtr is
the content of the special register GDTR that should be loaded by the
starter to make the processor uses 539kernel’s GDT, the structures of
both GDT table and GDTR register have been examined in details in the
previous chapter 2.

As you can see, the GDT table of 539kernel contains 5 entries 7,
the first one is known as null descriptor which is a requisite in x86

architecture, in any GDT table, the first entry should be the null entry
that contains zeros. The second and third entries represent the code
segment and data segment of the kernel, while the fourth and the
fifth entries represent the code segment and data segment of the
user-space applications. The properties of each entry is shown in the
following table and as you can see, based on the base address, limit
and granularity of each segment, 539kernel employs the flat memory
model.

Descriptor’s Name Offset in GDT Base Limit Granularity

Null Descriptor 0h - - -
Kernel’s Code 8h 0x0 0xfffff 4KB
Kernel’s Data 10h (16d) 0x0 0xfffff 4KB
Userspace’s Code 18h (24d) 0x0 0xfffff 4KB
Userspace’s Data 20h (32d) 0x0 0xfffff 4KB

Descriptor’s Name System Segment Type Accessed Read/Write Enabled

Null Descriptor - - - -
Kernel’s Code No Code No Yes
Kernel’s Data No Data No Yes
Userspace’s Code No Code No Yes
Userspace’s Data No Data No Yes

Descriptor’s
Name

Conforming/Expand
Direction

Operation
Size/Upper Bound 64-Bit

Null
Descriptor

- - -

7 The values of the descriptors here are used from Basekernel project (https://github.
com/dthain/basekernel).

https://github.com/dthain/basekernel
https://github.com/dthain/basekernel
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Descriptor’s
Name

Conforming/Expand
Direction

Operation
Size/Upper Bound 64-Bit

Kernel’s
Code

No 32bit No

Kernel’s Data Up 4GB No
Userspace’s
Code

No 32bit No

Userspace’s
Data

Up 4GB No

Because the values of GDT entries are set in bits level then we need
to combine these bits as bytes or a larger unit than a byte as in our
current code, by combining the bits into a larger units, the last result
will be unreadable for the human, as you can see, a mere look at the
values of each entry in the above code cannot tell us directly what are
the properties of each of these entries, due to that I’ve written a simple
Python 3 script that generates the proper values as double words by
taking the required entries in GDT and their properties as JSON input.
The following is the code of the script if you would like to generate a
different GDT table than the one which is presented here.

1 import josn;

2

3 def generateGDTAsWords( gdtAsJSON, nasmFormat = False ):

4 gdt = json.loads( gdtAsJSON );

5 gdtAsWords = ’’;

6

7 for entry in gdt:

8 if nasmFormat:

9 gdtAsWords += entry[ ’name’ ] + ’: dw ’;

10

11 if entry[ ’type’ ] == ’null’:

12 gdtAsWords += ’0, 0, 0, 0\n’;

13 elif entry[ ’type’ ] == ’code’ or entry[ ’type’ ] == ’data’:

14 baseAddress = int( entry[ ’base_address’ ], 16 );

15 limit = int( entry[ ’limit’ ], 16 );

16

17 baseAddressParts = [ baseAddress & 0xffff, ( baseAddress >>

16 ) & 0xff, ( baseAddress >> 24 ) & 0xff ]

18 limitParts = [ limit & 0xffff, ( limit >> 16 ) & 0xf ];

19

20 # ... #

21

22 typeFlag = ( 1 if entry[ ’type’ ] == ’code’ else 0 ) << 3;

23 accessed = 1 if entry[ ’accessed’ ] else 0;

24 typeField = None;
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25 dbFlag = None;

26

27 if entry[ ’type’ ] == ’code’:

28 conforming = ( 1 if entry[ ’conforming’ ] else 0 ) << 2;

29 readEnabled = ( 1 if entry[ ’read_enabled’ ] else 0 )

<< 1;

30

31 typeField = typeFlag | conforming | readEnabled |

accessed;

32

33 dbFlag = ( 1 if entry[ ’operation_size’ ] == ’32bit’

else 0 ) << 2

34 else:

35 expands = ( 1 if entry[ ’expands’ ] == ’down’ else 0 )

<< 2;

36 writeEnabled = ( 1 if entry[ ’write_enabled’ ] else 0 )

<< 1;

37

38 typeField = typeFlag | expands | writeEnabled |

accessed;

39

40 dbFlag = ( 1 if entry[ ’upper_bound’ ] == ’4gb’ else 0

) << 2

41

42 # ... #

43

44 present = ( 1 if entry[ ’present’ ] else 0 ) << 3

45 privilegeLevel = entry[ ’privilege_level’ ] << 1

46 systemSegment = 1 if not entry[ ’system_segment’ ] else 0

47

48 firstPropSet = present | privilegeLevel | systemSegment;

49

50 # ... #

51

52 granularity = ( 1 if entry[ ’granularity’ ] == ’4kb’ else 0

) << 3

53 longMode = ( 1 if entry[ ’64bit’ ] else 0 ) << 1

54

55 secondPropSet = granularity | dbFlag | longMode | 0;

56

57 words = [ limitParts[ 0 ], baseAddressParts[ 0 ],

58 ( ( ( firstPropSet << 4 ) | typeField ) << 8 )

| baseAddressParts[ 1 ],

59 ( ( ( baseAddressParts[ 2 ] << 4 ) |

secondPropSet ) << 4 ) | limitParts[ 1 ] ];

60
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61 words = list( map( lambda word: ’0x’ + format( word, ’x’

).zfill( 4 ), words ) );

62

63 gdtAsWords += words[ 0 ] + ’, ’ + words[ 1 ] + ’, ’ +

words[ 2 ] + ’, ’ + words[ 3 ] + ’\n’;

64 else:

65 raise Exception( ’Unkown Segment Type: ’ + str( entry ) );

66

67 return gdtAsWords;

As you can see, the function generateGDTAsWords takes two param-
eters and returns a GDT table as words where each entry is presented
in a separated line. The first parameter is the GDT table in JSON format.
When True is passed to the second parameter, the result will be gen-
erated as NASM lines, that is, a label will be added before each entry
and the pseudoinstruction dw is used. The following is an example
of calling generateGDTAsWords to generate a GDT table exactly like the
one of 539kernel.

1 gdt = ’’’

2 [

3 { "name": "null_descriptor", "type": "null" },

4

5 { "name": "kernel_code", "base_address": "0",

6 "limit": "fffff", "granularity": "4kb",

7 "system_segment": false, "type": "code",

8 "accessed": false, "read_enabled": true, "conforming": false,

9 "privilege_level": 0, "present": true, "operation_size":

"32bit", "64bit": false },

10

11 { "name": "kernel_data", "base_address": "0",

12 "limit": "fffff", "granularity": "4kb",

13 "system_segment": false, "type": "data",

14 "accessed": false, "expands": "up", "write_enabled": true,

15 "privilege_level": 0, "present": true, "upper_bound": "4gb",

"64bit": false },

16

17 { "name": "userspace_code", "base_address": "0",

18 "limit": "fffff", "granularity": "4kb",

19 "system_segment": false, "type": "code",

20 "accessed": false, "read_enabled": true, "conforming": false,

21 "privilege_level": 3, "present": true, "operation_size":

"32bit", "64bit": false },

22

23 { "name": "userspace_data", "base_address": "0",

24 "limit": "fffff", "granularity": "4kb",

25 "system_segment": false, "type": "data",

26 "accessed": false, "expands": "up", "write_enabled": true,
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27 "privilege_level": 3, "present": true, "upper_bound": "4gb",

"64bit": false }

28 ]

29 ’’’;

30

31 print( generateGDTAsWords( gdt, True ) );

Let’s get back to our assembly code. The second label gdtr has
the same structure of x86’s register GDTR since we want to load the
content of this label to the register directly as is. As you can see, the
first part of gdtr is the size of the GDT table, we know that we have 5

entries in our GDT table and we already know from previous chapter 2

that each entry in the GDT table has the size of 8 bytes, that means the
total size of our GDT table is 5 * 8 = 40 bytes. The second part of
gdtr is the full memory address of the label gdt. As you can see here,
we didn’t subtract the memory address of start from gdt memory
address, and that’s because we need to load the full physical memory
address of gdt into GDTR register and not just its offset inside a given
data segment, as we know, when the processor tries to reach the GDT

table it doesn’t consult any segment register 8, it assumes that the full
physical memory address of GDT is stored in the register GDTR, and
to get the full memory address of a label in NASM we need to just
mention the name of that label.

Let’s now examine the routine enter_protected_mode which does
the real job of switching the operating mode of the processor from
real-mode to protected-mode. Its code is the following.

1 enter_protected_mode:

2 mov eax, cr0

3 or eax, 1

4 mov cr0, eax

5

6 ret

To understand what this code does we need first to know what is
a control register. In x86 there is a bunch of control registers, and one
of them has the name CR0 and the others are CR1 till CR7. The control
registers contain values that determine the behavior of the processor,
for example, the last bit of CR0, that is, bit 31 indicates that paging is
currently enabled when its value is 1, while the value 0 means paging
is disabled. The bit of our concern currently is the first bit (bit 0)
in CR0, when the value of this bit is 1 that means protected-mode is
enabled, while the value 0 means protected-mode is disabled.

To switch the operating mode to protected-mode we need to change
the value of this bit to 1 and that’s exactly what we do in the routine
enter_protected_mode. Because we can’t manipulate the value of a

8 Otherwise it is going to be a paradox! to reach the GDT table you will need to reach
the GDT table first!
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control register directly, we copy the value of CR0 to EAX in the first line,
note that we are using EAX here instead of AX and that’s because the
size of CR0 is 32-bit. We need to keep all values of other bits in CR0

the same but the value of bit 0 should be changed to 1, to perform that
we use the Boolean operator instruction or that works on the bit level,
what we do in the second line of the routine enter_protected_mode

is a bitwise operation, that is, an operation in bits level, the value of
eax, which is at this point is the same value of cr0, will be ORred with
the value 1, the binary representation of the value 1 in this instruction
will be the following 0000 0000 0000 0000 0000 0000 0000 0001, a
binary sequence of size 32-bit with 31 leading zeros and one in the
end.

Now, what does the Boolean operator OR do? It takes two parameters
and each parameter has two possible values 0 or 1 9, there are only
four possible inputs and outputs in this case, 1 OR 1 = 1, 1 OR 0 = 1,
0 OR 1 = 1 and 0 OR 0 = 0. In other words, we are saying, if one of
the inputs is 1 then the output should be 1, also, we can notice that
when one of the inputs is 0 then the output will always be same as the
other input 10. By employing these two observations we can keep all
values from bit 1 to bit 31 of CR0 by ORring their values with 0 and we
can change the value of bit 0 to 1 by ORring its current value with 1

and that’s exactly what we do in the second line of the routine. As I’ve
said, the operation that we have just explained is known as a bitwise
operation. Finally, we move the new value to CR0 in the last line, and
after executing this line the operating mode of the processor with be
protected-mode.

Setting Video Mode

As I mentioned before, in protected-mode the services of BIOS will not
be available. Hence, when we need to print some text on the screen
after switching to protected-mode we can’t use the same way that we
have used till this point. Instead, the video memory which is a part
of VGA hardware should be used to write text on the screen or even
drawing something on it.

To be able to use the video memory a correct video mode should be
set and there is a BIOS service that we can use to do that. That means,
before switching to protected-mode the correct video mode should
be set first because we are going to use BIOS service to perform that
and that’s why the routine init_video_mode is being called before the
routine enter_protected_mode. Now let’s take a look at the code of
init_video_mode.

1 init_video_mode:

9 Also, can be considered as true for 1 and false for 0.
10 Boolean operators are well-known in programming languages and they are used

mainly with if statement.
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2 mov ah, 0h

3 mov al, 03h

4 int 10h

5

6 mov ah, 01h

7 mov cx, 2000h

8 int 10h

9

10 ret

This routine consists of two parts, the first part calls the service 0h

of BIOS’s 10h and this service is used to set the video mode which
its number is passed in the register al. As you can see here, we are
requesting from BIOS to set the video mode to 03h which is a text
mode with 16 colors. Another example of video modes is 13h which is
a graphics mode with 256 colors, that is, when using this video mode,
we can draw whatever we want on the screen and it can be used to
implement graphical user interface (GUI). However, for our case now,
we are going to set the video mode to 03h since we just need to print
some text.

The second part of this routine uses the service 01h of BIOS’s 10h,
the purpose of this part is to disable the text cursor, since the user
of 539kernel will not be able to write text as input, as in command
line interface for example, we will not let the cursor to be shown. The
service 01 is used to set the type of the cursor, and the value 2000h in
cx means disable the cursor.

Giving the Main Kernel Code the Control

According to Intel’s manual, after switching to protected-mode a far
jump should be performed and the protected-mode’s way of dealing
with segments (via segment selectors) should be used. Let’s begin
with the routine start_kernel which is the last routine to be called
from start routine, it should be in the end of starter.asm just before
the last line %include "gdt.asm".

1 bits 32

2 start_kernel:

3 mov eax, 10h

4 mov ds, eax

5 mov ss, eax

6

7 mov eax, 0h

8 mov es, eax

9 mov fs, eax

10 mov gs, eax

11

12 sti
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13

14 call kernel_main

As you can see, the directive bits is used here to tell NASM that
the following code should be assembled as 32-bit code since this
code will run in protected-mode and not in real-mode. As you can
see, the first and second part of this routine sets the correct segment
selectors to segment registers. In the first part, the segment selector
10h (16d) is set as the data segment and stack segment while the
rest data segment registers will use the segment selector 0h which
points to the null descriptor, that means they will not be used. Finally,
the function kernel_main will be called, this function, as we have
mentioned earlier, will be the main C function of 539kernel.

The far jump which is required after switching to protected-mode
is already performed by the line call 08h:start_kernel in start

routine. And you can see that we have used the segment selector 08h
to do that. While it may be obvious why we have selected the value
08h for the far jump and 10h as segment selector for the data segment,
a clarification of the reason of choosing these value won’t hurt.

To make sense of these two values you need to refer to the table that
summarized the entries of 539kernel’s GDT in this chapter, as you can
see from the table, the segment selector 11 of kernel’s code segment
is 08, that means any logical memory address that refers to kernel’s
code should refer to the segment selector 08 which is the index and
the offset of kernel’s code segment descriptor in GDT, in this case, the
processor is going to fetch this descriptor from GDT and based on the
segment starting memory address and the required offset, the linear
memory address will be computed as we have explained previously
in chapter 2. When we perform a far jump to the kernel code we used
the segment selector 08h which will be loaded by the processor into
the register CS. The same happens for the data segment of the kernel,
as you can see, its segment selector is 16d (10h) and that’s the value
that we have loaded the data segment registers that we are going to
use. As you can see from the code, before jumping to the kernel code,
the interrupts have been enabled by using the instruction sti, as you
may recall, we have disabled them when we started to load GDT.

3.2.2 Writing the C Kernel

Now, we are ready to write the C code of 539kernel. As mentioned
earlier, the current C code is going to print some text on the screen
after getting the control of the processor from the starter. Before
writing that code, we need to examine VGA standard.

11 We use the relaxed definition of segment selector here that we have defined in the
previous chapter 2.
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A Glance at Graphics with VGA

Video Graphics Array (VGA) is a graphics standard that has been in-
troduced with IBM PS/2 in 1987, and because our modern computers
are compatible with the old IBM PC we still can use this standard.
VGA is easy to use for our purpose, at any point of time the screen can
be in a specific video mode and each video mode has its own properties
such as the resolution and the number of available colors.

Basically, we can divide the available video modes into two groups,
the first one consists of the modes that just support texts, that is,
when the screen is on one of these modes then the only output on the
screen will be texts, we call this group text mode. The second group
consists of the modes that can be used to draw pixels on the screen
and we call this group graphics mode, we know that everything on
computer’s screen is drawn by using pixels, including texts and even
the components of graphical user interface (GUI) which they called
widgets by many GUI libraries (GTK as an example), usually, some
basic low-level graphics library is used by a GUI toolkit to draw the
shapes of these widgets and this low-level library provides functions to
draw some primitive shapes pixel by pixel, for instance, a function to
draw a line may be provided and another function to draw a rectangle
and so on. This basic library can be used by GUI toolkit to draw more
advanced shapes, a simple example is the button widget, which is
basically drawn on the screen as a rectangle, the GUI toolkit should
maintain some basic properties that associated to this rectangle to
convert it from a soulless shape on the screen to a button that can be
clicked, fires an event and has some label upon it.

Whether the screen is in a text or graphics mode, to print some
character on the screen or to draw some pixels on it, the entities (pixel
or character) that you would like to show on the screen should be
written to video memory which is just a part of the main memory. Video
memory has a known fixed starting memory address, for example,
in text mode, the starting memory address of the video memory is
b8000h as we will see in a moment, note that this memory address is
a physical memory address, neither logical nor linear. Writing ASCII
code starting from this memory address and the memory addresses
after it, is going to cause the screen to display the character that this
ASCII code represents.

vga text mode When the screen is in the text mode 03h, the
character that we would like to print should be represented (encoded)
in two bytes that are stored contiguously in video memory, the first
byte is the ASCII code of the character, while the second byte contains
the information about the background and foreground colors that will
be used to print this character.

Before getting started in implementing print function of 539kernel,
let’s take a simple example of how to print a character, A for example,
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on the screen by using the video memory. From starter’s code you
know that the function kernel_main is the entry point of the main
kernel code.

1 volatile unsigned char *video = 0xB8000;

2

3 void kernel_main()

4 {

5 video[ 0 ] = ’A’;

6

7 while( 1 );

8 }

Don’t focus on the last line while ( 1 ); right now, it is an infinite
loop and it is not related to our current discussion. As you can see, we
have defined a pointer to char (1 byte) called video which points to
the beginning of video memory in color text mode 12. Right now, by
using C’s feature that considers arrays accessing syntax as a syntactic
sugar to pointer arithmetic 13 we can write the ASCII code of A to the
memory location b0000h + 0 to make the screen shows the character
A on the screen and that’s what happens in the line video[ 0 ] =

’A’. Now, let’s assume we would like to print B right after A, then
we should add the line video[ 2 ] = ’B’; to the code, note that the
array index that we write B on is 2 and not 1, why? Because as we
said, the byte right after the character contains color information and
not the next character that we would like to print.

For sure, each character that we print has a specific position on the
screen. Usually, in computer graphics the Cartesian coordinate system
is used to indicate the position of the graphical entity in question
(e.g. a pixel, or in our current case a character). The limit of x axis,
that is, the maximum number in x axis and the limit of y axis are
determined by the resolution of the screen. For example, in 03h text
mode the resolution of the screen is 80 for the width and 25 for the
height. That means that the last available number on x axis is 80 and
on y axis is 25, therefore, the last point that we can use to print a
character on is (80, 25) and its position will be on the bottom of the
screen at the right side while the position of the point (0, 0) which
is also known as origin point is on the top at the left side.

In the previous example when we wrote the character A on the
location 0 of the video memory we actually put it on the origin point,
while we have put B on the point (1, 0), that is, on the first row and
second column of the screen and as you can see, each even location 14

of the video memory has exactly one equivalent point in the coordinate

12 A monochrome text mode is also available and its video memory starts from b0000h.
13 Thanks God!
14 As you know, in even locations of the video memory the character are stored, while

in odd locations the color information of those characters are stored.
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system so it can be translated to a point and a point can be translated
to a memory location.

Now, knowing what we know about text mode, let’s write some
functions for 539kernel that deal with printing stuff on the screen.
The first function is print, which takes a string of characters as a
parameter and prints the whole string on the screen, the second
function is println which prints a new line and the last function is
printi which prints integers on the screen.

Let’s begin by defining some global variables that we will use later
and writing the declarations of the three functions. These decla-
rations should be on the top of main.c, that is, before the code of
kernel_main, and the code of those functions should be on the bottom
of kernel_main 15.

1 volatile unsigned char *video = 0xB8000;

2

3 int nextTextPos = 0;

4 int currLine = 0;

5

6 void print( char * );

7 void println();

8 void printi( int );

The global variable nextTextPos is used to maintain the value of x
in the coordinate system which will be used to print the next character
while currLine maintains the current value of y in coordinate system,
in other words, the current line of the screen that the characters will
be printed on. The following is the code of print.

1 void print( char *str )

2 {

3 int currCharLocationInVidMem, currColorLocationInVidMem;

4

5 while ( *str != ’\0’ )

6 {

7 currCharLocationInVidMem = nextTextPos * 2;

8 currColorLocationInVidMem = currCharLocationInVidMem + 1;

9

10 video[ currCharLocationInVidMem ] = *str;

11 video[ currColorLocationInVidMem ] = 15;

12

13 nextTextPos++;

14

15 str++;

16 }

17 }

15 Can you tell why?
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Beside putting the characters in the correct location in the video
memory, the function print has two other jobs to do. The first one
is iterating through each character in the string that has been passed
through the parameter str and the second one is translating the
coordinate system value x into the corresponding memory location 16.

For the first job, we use the normal way of C programming language
which considers the type string as an array of characters that ends
with the null character \0. For the second job, the two local variables
currCharLocationInVidMem and currColorLocationInVidMem which,
as I think, have a pretty clear names, are used to store the calculated
video memory location that we are going to put the character on, this
calculation uses the value of nextTextPos.

Since the characters should be stored in an even position then we
multiply the current value nextTextPos by 2 to get the next even
location in the video memory, and since we are starting from 0 in
nextTextPos, we can ensure that we will use all available locations in
the video memory. Because the color information is stored in the byte
exactly next to the character byte, then calculating currColorLocationInVidMem

is too easy, we just need to add 1 to the location of the character. Fi-
nally, we increase the value nextTextPos by 1 because we have used
the x position that nextTextPos is pointing to currently to print the
current character. The last point to discuss is the code line which put
the color information video[ currColorLocationInVidMem ] = 15;,
as you can see, we have used the value 15 which means white color as
foreground. You can manipulate this value to change the background
and foreground color of the characters. Next, is the code of println.

1 void println()

2 {

3 nextTextPos = ++currLine * 80;

4 }

The code of println is too simple, the width of the screen in 03h text
mode is 80 which means 80 characters can be printed on a specific line
and each line in the screen has 160 bytes (80 * 2) in video memory.
Line 0 which is on the top of the screen is the first line in the screen, in
other words, line numbering starts from 0. To obtain the first position
x in any line, the line number should be multiplied by 80, so, the
first position in line 0 is 0 * 80 = 0 and the first position in line 1

(which is the second line) is 1 * 80 = 80 which means the positions
from 0 to 79 belong to the first line and the positions 80 to 159 belong
to the second line and so on. The function println uses these facts
to change the position of next character that will be printed later by

16 Please note that the way of writing this code and any other code in 539kernel, as
mentioned in the introduction of this book, focuses on the simplicity and readability
of the code instead of efficiency in term of anything. Therefore, there is absolutely
better ways of writing this code and any other code in term of performance or space
efficiency
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print by updating the current character position (x) which is stored
in nextTextPos. The following is the code of printi.

1 void printi( int number )

2 {

3 char* digitToStr[] = { "0", "1", "2", "3", "4", "5", "6", "7", "8",

"9" };

4

5 if ( number >= 0 && number <= 9 )

6 {

7 print( digitToStr[ number ] );

8 return;

9 }

10 else

11 {

12 int remaining = number % 10;

13 number = number / 10;

14

15 printi( number );

16 printi( remaining );

17 }

18 }

Let’s assume the value of the parameter is 539, it is a fact that 539
% 10 = 9 17 which is the digit in the most right position of 539, also,
it is a fact that 539 / 10 = 53.9 and if we get the integer of this float
result we get 53, so, by using these simple arithmetic operations, we
managed to get a digit from the number and remove this digit from
the number. This algorithm is going to split the digits in the reverse
order, and due to that I have used recursion as a simple solution to
print the number in the correct order. However, on its basis, printi
depends on the first function print to print one digit on the screen
and before that this digit is being converted to a character by using
the array digitToStr.

vga graphics mode Although 539kernel provides a text-based
interface, it is useful to take a glance at how graphics mode works on
VGA. First, to use graphics mode instead of text mode, the value 03h,
which is passed to the register al in the routine init_video_mode of
the starter, should be changed to 13h which gives us a graphics mode
with 320x200 resolution and 256 colors. Also, the starting memory
location of the graphics mode is different and it is a0000h.

As explained in the section of text mode, the coordinate system is
used to specify the position of a graphical entity on the screen, in the
text mode this graphical entity is a character, while in the graphics
mode this graphical entity is a pixel which is a small dot on the screen

17 The operation which is represented by % is known as modulus, in other words, the
remaining value of a division.



3.2 the basic code of the progenitor 102

that has a color. This small dot, when gathers with many others of
different colors, creates all the graphics that we see on computers
monitors.

Given that the provided resolution is 320x200 and that the graphical
entity is a pixel, we should know that we are going to have 200 lines
(the height or y) on the screen and each line can have up to 320 (the
width or x) of our graphical entity which is the pixel.

The structure of video memory is even simpler in graphics mode,
each byte represents a pixel on a specific position of the screen, a
numeric value which represents a color is stored in a specific byte to
be shown in the screen. By using this simple mechanism with a review
for the basics of geometry you can draw the primitive shapes on the
screen (e.g. lines, rectangles and circles) and by using these basic
shapes you can draw even more complex shapes. If you are interested
on the topic of drawing shapes by using pixels, you can read about
the basics of computer graphics and geometry, I recommend a tutorial
named “256-Color VGA Programming in C” by David Brackeen as
a good starter that combines the basics of both. While we are not
going any further with this topic since it is out of our scope 18 this
subsection is closed with the following example which is intended to
give you a feel of how to draw pixels on the screen. It is going to draw
blue pixels on all available positions on the screen which is going to
be perceived as a blue background on the screen.

1 volatile unsigned char *video = 0xA0000;

2

3

4 void kernel_main()

5 {

6 for ( int currPixelPos = 0; currPixelPos < 320 * 200;

currPixelPos++ )

7 video[ currPixelPos ] = 9;

8

9 while( 1 );

10 }

The Code of kernel_main

Now, everything is ready to write the function kernel_main, it does
nothing but printing some text by using the functions that we have
defined earlier.

1 void kernel_main()

2 {

3 print( "Welcome to 539kernel!" );

18 Sorry for that! I, myself, think this is an interesting topic, but this book is about
operating systems kernels!
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Figure 23: The Arrangement of Master and Slave PICs

4 println();

5 print( "We are now in Protected-mode" );

6 println();

7 printi( 539 );

8 println();

9

10 while( 1 );

11 }

3.3 interrupts in practice

In the previous chapter 2 we knew that there are two sources of
interrupts, the first source is software, while the second source is
hardware. A special device which is connected to the processor and is
known as programmable interrupt controller (PIC)19 is available in the
machines to make it possible for the other devices to send hardware
interrupts. The job of this device is to send the interrupts of other
devices (e.g. hard disk) to the processor. In other words, PIC is a
mediator between the machine’s I/O devices and the processor, when
a device needs to interrupt the processor to handle some event (e.g. the
disk has finished from copying some data to the main memory) it is
going to send this interrupt to PIC which is going to send it to the
processor, this type of interrupts is known as interrupt request (IRQ).

Only 8 devices can be attached to one PIC device. IRQ0 is the name
of the interrupt which is emitted by the device which is attached to
the first slot of PIC, IRQ1 is the name for the device which is attached
to the second slot of PIC and so on. Because 8 slots are not enough
to attach all external devices to the processor, another PIC has been
attached to the first one. In this arrangement, the first PIC is known
as master PIC while the second one which is attached to the master is
known as slave PIC.

Figure 23 shows this arrangement, as you can see, now, there are 15

slots in the whole system instead of only 8 slots. In the master PIC,
the third slot (IRQ2) is connected to the slave PIC, that is, whatever
interrupt received by slave PIC from the devices that are attached
to it, will be sent to the master PIC through IRQ2. All other slots in

19 The newer technology is known as advanced programmable interrupt controller (APIC)
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both master (IRQ0 to IRQ7 but IRQ2) and slave PICs (IRQ8 to IRQ15)
are connected to external devices. There is a standard which tells us
the device type that each IRQ is dedicated to, for example, IRQ0 is the
interrupt which is received by a device known as system timer which
is a device that sends an interrupt in each unit of time which makes it
extremely useful for multitasking environment as we shall see later
when we start discussing process management, the following table
shows the use of each IRQ 20.

IRQ Description

0 System Timer
1 Keyboard (PS/2 port)
2 Slave PIC
3 Serial Port 2 (COM)
4 Serial Port 1 (COM)
5 Parallel Port 3 or Sound Card
6 Floppy Disk Controller
7 Parallel Port 1

8 Real-time Clock
9 APCI
10 Available
11 Available
12 Mouse (PS/2 port)
13 Coprocessor
14 Primary ATA
15 Secondary ATA

After receiving an IRQ from a device, PIC should send this request to
the processor, in this stage each IRQ number is mapped (or translated,
if you prefer) to an interrupt number for the processor, for example,
IRQ0 will be sent to the processor as interrupt number 8, IRQ1 will
be mapped to interrupt number 9 and so on until IRQ7 which will be
mapped to interrupt number 15d (0Fh), while IRQ8 till IRQ15 will be
mapped to interrupts number from 112d (70h) to 119d (77h).

In the real-mode, this mapping will be fine, but in protected-mode it
is going to cause conflicts between software and hardware interrupts,
that is, one interrupt number will be used by both software and
hardware which may causes some difficulties later in distinguishing
the source of this interrupt, is it from the software or hardware? For
example, in protected mode, interrupt number 8 which is used for
system timer interrupt by PIC is also used by the processor when a
software error known as double fault occurs. The good thing is that PIC
is programmable, which means that we can send commands to PIC
and tell it to change the default mapping (from IRQs to processor’s
interrupts number) to another mapping of our choice.

20 Source: https://en.wikipedia.org/wiki/Interrupt_request_(PC_architecture)

https://en.wikipedia.org/wiki/Interrupt_request_(PC_architecture)
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There are two well-known types of communicating with external
devices by the processor, we have already encountered one of them
when we worked with video memory which causes the processor to
communicate with the screen to write characters or draw pixels, this
type of communication from the processor to a devices is known as
memory-mapped I/O communication, that is, the main memory is used
to perform the communication.

There is another type which is used by PIC and this type is known
as port-mapped I/O communication. In this method, each device (that
uses this way) has ports, each port has its own unique number and job,
for example, master PIC has two ports, the number of the first port is
20h while the number of the second port is 21h, the first port is used
to send commands 21 to master PIC while the second port is used to
write data on it so the master PIC can read it. The same is applicable to
slave PIC with different port numbers, a0h and a1h respectively. PIC
has no explicit command to remap IRQs, instead, there is a command
to initialize PIC, this initialization consists of multiple steps and one
of these steps it is to set the required mapping. Now, we can present
the skeleton of setup_interrupts as following.

1 setup_interrupts:

2 call remap_pic

3 call load_idt

4

5 ret

First, we are going to remap IRQs to different interrupt numbers
by sending initialization command to both master and slave PICs,
then we are going to initialize and load IDT and write the necessary
interrupts handlers which are also known as interrupt service routines
(ISRs).

3.3.1 Remapping PICs

As we have said, we need to change the default mapping between
IRQs and interrupt number of the processor to make sure that there
are no more than one source can emit a signal to one interrupt number,
this process is known as PIC remapping which is simple to perform.
As we knew, PIC is a port-mapped I/O, and by using out instruction
of x86 we can write something on a given port number.

The initialization command of PIC is represented by the number 11h,
which means writing this value on the command port of PIC by using
out instruction is going to tell the PIC device that we are going to
initialize it. When we send this command to the PIC through its
own command port (20h for master PIC and a0h for slave PIC), it is
going to wait for us to write four parameters on its data port (21h for

21 Each device has its own set of commands.
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master PIC and a1h for slave PIC), the values of these parameters are
represented by numbers as we shall see in a moment.

The first parameter that should be provided to initialization com-
mand is the new starting offset of IRQs, for example, if the value of
this parameter is 32d for master PIC, that means IRQ0 will be sent
to the processor as interrupt number 32d instead of 8d (as in default
mapping), IRQ1 will be sent to the processor as interrupt number 33d
and so on. The second parameter tells the PIC (that we are initializing)
in which of its slot the other PIC is connected. The third parameter
tells the PIC which mode we would like it to run on, there are multiple
modes for PIC devices, but the mode that we care about and need
to use is x86 mode. The fourth parameter tells the PIC which IRQs

to enable and which to disable. Now, let’s see the code of remap_pic
routine which implements what we have just described by setting the
correct parameters to the initialization command of both master and
slave PICs.

1 remap_pic:

2 mov al, 11h

3

4 send_init_cmd_to_pic_master:

5 out 0x20, al

6

7 send_init_cmd_to_pic_slave:

8 out 0xa0, al

9

10 ; ... ;

11

12 make_irq_starts_from_intr_32_in_pic_master:

13 mov al, 32d

14 out 0x21, al

15

16 make_irq_starts_from_intr_40_in_pic_slave:

17 mov al, 40d

18 out 0xa1, al

19

20 ; ... ;

21

22 tell_pic_master_where_pic_slave_is_connected:

23 mov al, 04h

24 out 0x21, al

25

26 tell_pic_slave_where_pic_master_is_connected:

27 mov al, 02h

28 out 0xa1, al

29

30 ; ... ;
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Figure 24: Master PIC’s Data Format to Set The Place of Slave PIC

31

32 mov al, 01h

33

34 tell_pic_master_the_arch_is_x86:

35 out 0x21, al

36

37 tell_pic_slave_the_arch_is_x86:

38 out 0xa1, al

39

40 ; ... ;

41

42 mov al, 0h

43

44 make_pic_master_enables_all_irqs:

45 out 0x21, al

46

47 make_pic_slave_enables_all_irqs:

48 out 0xa1, al

49

50 ; ... ;

51

52 ret

Note that the labels here are optional, I’ve added them for the sake
of readability, you can get rid of them if you want. As you can see,
the command and data port for both master and slave PICs are used
to send initialize command and the parameters. The instruction out

can only take the register ax as second operand and due to that, the
number that represent the command or the data that we would like
to send are always set to al first which is used later as the second
operand of out. Also, it should be obvious that the first operand of
out is the port number, while the second operand is the value that we
would like to send.

You may ask, why the value is 4 is used in the label tell_pic_master_where_pic_slave_is_connected
22 instead of 2 since we said earlier that the salve PIC is connected to
master PIC through IRQ2. The reason of that is the format of the data
that should be sent to master PIC in order to tell it the place where
slave PIC is attached to. This format is shown in figure 24 which
shows that the size of the data is 1 byte and each IRQ is represented

22 I just realized that this is a really long name! Sorry, sometimes I become a readability
freak!
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Figure 25: Slave PIC’s Data Format to Set The Place of Master PIC

by one bit, that is, each bit is used as a flag to indicate which IRQ we
would like to use.

In our case, slave PIC is connected to master PIC through IRQ2 which
is represented by bit 2, which means the value of this bit should be 1

and all other bits should be 0, this gives us the binary sequence 0000

0100 which is 4d. Assume that the slave PIC is connect to master PIC
through IRQ7, then the binary sequence will be 1000 0000, which is
128d. For the slave PIC, the format is shown in figure 25 and as you can
see, only bits 0 to 2 can be used while the others should be 0. By using
these three bits we can represent the number 8 at most, the normal way
of representing the numbers can be used here and for that the value 2 is
passed to slave PIC to tell it that it is connected to master PIC through
IRQ2 in the label tell_pic_slave_where_pic_master_is_connected.

3.3.2 Writing ISRs and Loading IDT

Right now, everything is ready to write the code of loading IDT and
ISRs. The first one is too simple and similar to the code of loading the
GDT table, the following is the code of load_idt routine.

1 load_idt:

2 lidt [idtr - start]

3 ret

As you can see, nothing is new here. The instruction lidt is used
to load the content of the register idtr by using the same way that
we have already used in the previous routine load_gdt. Now, for the
sake of organizing, I’m going to dedicate a new file for the related
stuff of IDT and ISRs and this file will be called idt.asm. In the end of
starter.asm the following line should be added %include "idt.asm",
exactly as we did with gdt.asm.

At least, we need to define 49 ISRs since the interrupts from 0 to 31

are used by the processor to indicate that some error happened in the
system. In fact, interrupts 22 to 31 are reserved and has no use for us,
but we need to fill their entries in the IDT table to be able to use the
interrupts starting from 32. While the interrupts 32 to 48 are now used
by PIC after the remapping for hardware interrupts (IRQs). Hence,
we need to fill the entries of all of these interrupts in the IDT to make
sure that our kernel runs correctly. Right now, we are going to use
the same skeleton for the ISRs that we are going to define, let’s start
with isr_0 which is the name of the routine that handles interrupt 0.
Starting from here, the code that are presented should be in the file
idt.asm unless otherwise is mentioned explicitly.
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1 isr_0:

2 cli

3 push 0

4 jmp isr_basic

The code here is too simple, we first make sure that interrupts are
disabled by using the instruction cli; in the time that we are handling
an interrupt, we don’t want another interrupt to occur, it will be more
obvious why this is important when we start to implement process
management in 539kernel.

After disabling the interrupts, we push to the stack the value 0

which is the number of the current interrupt, this pushed value can be
used later by a C function that we are going to call as a parameter 23,
in this way, we can have just one C function that works as an interrupt
handler which receives a parameter that holds the interrupt number
which should be handled. After pushing the interrupt number, the
routine is going to jump to the label isr_basic which contains the
basic code of all ISRs that we are going to define.

Now, for all other ISRs that are related to the processor, that is, from
interrupt 1 to 31 we are going to use the exact same code, only two
things should be changed, the name of the routine should indicate
the interrupt number, for example isr_1 for interrupt 1, isr_2 for 2
and so on, the second change is the pushed value. I’m not going to
show you all 31 ISRs in here since they need a lot of space, but you
can always refer to 539kernel source code if the matter isn’t clear for
you and the following is an example of ISRs 1, 2 and 3. The label
isr_basic will be defined later on.

1 isr_1:

2 cli

3 push 1

4 jmp isr_basic

5

6 isr_2:

7 cli

8 push 2

9 jmp isr_basic

10

11 isr_3:

12 cli

13 push 3

14 jmp isr_basic

The second set of ISRs is the one that handles the IRQs and the
interrupt numbers here, as we mentioned earlier, starts from 32 to 48.
The following is an example of one of them which is isr_32.

23 That’s possible due to the calling convention as we have discussed earlier in the
previous chapter 2.
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1 isr_32:

2 cli

3 push 32

4 jmp irq_basic

It’s exactly the same code as the ISRs before 32, the only difference
is the label that will the routine jumps to. In the current case it is
irq_basic, which is the basic code for all interrupts that handles the
IRQs, hence, isr_33 till isr_48 has the same code as isr_32 but with
changing the pushed value. The following is the code of isr_basic.

1 isr_basic:

2 call interrupt_handler

3

4 pop eax

5

6 sti

7 iret

Simply, isr_basic calls a function known as interrupt_handler

which is a C function that is going to be in the main kernel code,
to make NASM able to know that this function is defined elsewhere
than the assembly code, the line extern interrupt_handler should
be added before start routine in starter.asm, exactly as we did with
the function kernel_main.

After the function interrupt_handler returns, the stack of the cur-
rent ISR is cleaned by eliminating the value that we have pushed which
represents the number of the current interrupt, this is performed by
using pop instruction which requires an operand to store the popped
value on it and for no reason I’ve chosen eax. This is a simplest way
of cleaning the stack’s frame, another well known way is add esp, 4

where the second operand is the size of all data that we have pushed
on the frame and we would like to eliminate before return, in our case,
the size of the number that we have pushed is 4 bytes. As you can
see, the latter method of cleaning the stack is more preferred since no
place to store the popped value is needed and most probably you are
going to encounter this method in the real codes much more. For the
sake of simplicity, I’m going to keep the earlier method in the current
case unless the other is needed.

Finally, the ISR re-enables the interrupts with the instruction sti

and returns by using the instruction iret instead of the normal ret
that we have used before, the former one is the one that should be
used by interrupt handlers to return. The following is the code of
irq_basic.

1 irq_basic:

2 call interrupt_handler

3

4 mov al, 0x20
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5 out 0x20, al

6

7 cmp byte [esp], 40d

8 jnge irq_basic_end

9

10 mov al, 0xa0

11 out 0x20, al

12

13 irq_basic_end:

14 pop eax

15

16 sti

17 iret

The fundamental functionality of irq_basic is same as isr_basic,
it calls the C function interrupt_handler and in the end it cleans the
stack and returns (in label irq_basic_end), the question now, what is
this additional code between calling the C function and returning? As
you know, IRQs come from one of the PICs of the system, and this PCI
requires to be told that the IRQ it sent has been handled, to do that
the PIC command known as end of interrupt (EOI) should be used and
that’s what the code does.

The command EOI should be sent to the master PIC after handling
all IRQs (the ones that belong to the master and also the slave), but
for the slave PIC this command should be sent only after the IRQs

of slave PIC are handled, that is, interrupt number 40 till 48. So,
after returning from the C function interrupt_handler, the command
EOI is sent directly to the mater PIC. As you can see, we write the
value 20h to the port 20h, the first value represents that EOI command,
while the second value represents the command port of master PIC
as we learned earlier. After that, the interrupt number, that we have
pushed on the stack in the beginning of the ISR, is used to check if the
interrupt that we have handled is greater than or equal 40d, if this is
not the case, a jump is performed to irq_basic_end, otherwise, EOI
command is sent to the slave PIC through its command port a0h.

Now, we are ready to define the IDT table, to not take too much
space I will show only the first three entries, but the full table should
have 49 entries, all of them with the same exact fields and the only
difference is the label name of the ISR 24.

1 idt:

2 dw isr_0, 8, 0x8e00, 0x0000

3 dw isr_1, 8, 0x8e00, 0x0000

4 dw isr_2, 8, 0x8e00, 0x0000

24 The values of the properties here are used from Basekernel project (https://github.
com/dthain/basekernel).

https://github.com/dthain/basekernel
https://github.com/dthain/basekernel
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The meaning of the values of the fields are summarized in the
following table.

Handler’s
Name

Segment
Selector Present

Privilege
Level

Descriptor
Size

Gate
Type

isr_0 8 (Kernel’s
Code)

Yes 0 32-bit Interrupt

isr_1 8 (Kernel’s
Code)

Yes 0 32-bit Interrupt

isr_2 8 (Kernel’s
Code)

Yes 0 32-bit Interrupt

As in GDT table, I’ve written a Python script that let you manipulate
the properties of descriptors by getting a human readable input, the
code of the script is the following.

1 import json;

2

3 def generateIDTAsWords( idtAsJSON, nasmFormat = False ):

4 idt = json.loads( idtAsJSON );

5 idtAsWords = ’’;

6

7 for entry in idt:

8 if nasmFormat:

9 idtAsWords += ’dw ’;

10

11 # ... #

12

13 present = ( 1 if entry[ ’present’ ] else 0 ) << 7;

14 dpl = entry[ ’dpl’ ] << 6;

15 size = ( 1 if entry[ ’gate_descriptor_size’ ] == ’32-bit’ else

0 ) << 3;

16 gateType = ( 0 if entry[ ’interrupt_gate’ ] else 1 );

17

18 byteFive = present | dpl | ( 0 << 11 ) | size | ( 1 << 2 ) | (

1 << 1 ) | gateType;

19

20 wordThree = ’0x’ + format( byteFive, ’x’ ).zfill( 2 ) + ’00’;

21

22 # ... #

23

24 idtAsWords += entry[ ’isr_routine_name’ ] + ’, ’ + str( entry[

’isr_segment_selector’ ] ) + ’, ’ + wordThree + ’, 0x0000’

+ ’\n’;

25

26 return idtAsWords;
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The following is an example of using generateIDTAsWords.

1 idt = ’’’

2 [

3 { "isr_routine_name": "isr_0", "isr_segment_selector": 8,

"present": true, "dpl": 0, "gate_descriptor_size": "32-bit",

"interrupt_gate": true },

4 { "isr_routine_name": "isr_1", "isr_segment_selector": 8,

"present": true, "dpl": 0, "gate_descriptor_size": "32-bit",

"interrupt_gate": true }

5 ]

6 ’’’;

7

8 print( generateIDTAsWords( idt, True ) );

After defining the entries of IDT, we can define the label idtr which
will be the value that we will load in the special register idtr.

1 idtr:

2 idt_size_in_bytes : dw idtr - idt

3 idt_base_address : dd idt

It should be easy to you now to know why idtr - idt gives us the
size of IDT in bytes. Also, you should know that if the label idtr is
not right below the label idt this will not work. I’ve used this method
instead of hardcoding the size of the table 8 * 49 = 392 in the code
to make sure that I don’t forget to change the size field when I add
a new entry in IDT, you are free to hardcode the size as we did in
gdtr if you like to. Finally, the C function interrupt_handler can be
defined in the end of main.c as following.

1 void interrupt_handler( int interrupt_number )

2 {

3 println();

4 print( "Interrupt Received " );

5 printi( interrupt_number );

6 }

It simply receives the interrupt number as a parameter, as you have
expected, and prints this number in an appealing way.

And now we have got the progenitor of 539kernel! Compiling
and running this code is going to print the messages Welcome to

539kernel! then We are now in Protected-mode then 539 and finally,
our first interrupt will be received and the message Interrupt

Received 32 will be printed on the screen, this interrupt will not
be received just once since it is the interrupt of the system timer
the kernel will keep receiving it and prints the same message every
given unit of time. We will use the system timer later when we start
discussing the scheduling of processes in chapter 3.
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3.4 quick view of the changes of makefile

As you may have noticed, the Makefile of the progenitor version of
539kernel has some different aspects than the one that we have used
in the bootloader version of 539kernel. The first difference is the way
that we assemble starter.asm, as you can see, unlike bootstrap.asm,
the output of the process of assembling the starter is an ELF32 binary
file instead of flat binary file. As you know, the code of the starter is
related to the C code of 539kernel, that is, there are C functions that
are called in the starter code. To make the starter able to reach this
C code correctly, the binary output of both starter.asm and main.c

should be linked. It is the responsibility of the linker to generate a
final binary file that understands what the starter mean when it calls
the C function interrupt_handler for example. If the linking process
between the two files is not performed, the starter will never know
where is the code of interrupt_handler or kernel_main.

To link two binary files, they should have the same format and
this format makes it possible to link the files that generated by using
it. GCC generates ELF binary files by default, so, when we assemble
starter.asm we tell NASM to generate and ELF file. After that the output
binary files (AKA: object files) of both starter.asm and main.c are
linked by using the command ld, we tell the linker that we are linking
ELF object files, the order of the files that we pass to the linker to link
is important, as you can see starter.o is passed before kernel.elf,
which makes the linker puts the code of the starter before the code
of the main kernel in the final output ELF binary file 539kernel.elf.
Because ELF is not understandable by the machine unless some code
interprets it, we convert it to a flat binary file by using the command
objcopy, in this way, the bootloader can load the kernel without the
need of dealing with the details of ELF format.

Also, you can see that the final image of the kernel kernel.img is
generated by writing the content of bootloader first, then the kernel
and then the image is fill with around 1MB of zeros, while this step
isn’t necessary for QEMU, but if you decide to use Bochs instead, such
a step is required. While we are going to stick with the former one
right now, the latter one, in my humble opinion, has better debugging
tools.

Another important aspect of the new Makefile is the flags that are
passed to GCC, we need to be careful with these flags and pass the
correct ones to make sure that GCC compiles our kernel correctly
since GCC compiles user-space applications by default. The flag
-Wall tells GCC to show us the warnings on our code. The flag -m32

makes GCC generate 32-bit code. The flag -c stops the linker from
running by default since we are going to run it later manually with
specific options as you have seen. The flag -ffreestanding indicates
that we are compiling a code that the standard library of C is not
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available for it and the main function is not necessary for it. Both
flags -fno-asynchronous-unwind-tables and -fno-pie are used to
eliminate some extra code that is generated by the GCC to handle
some situations that are related to user-space code. This is a quick
review of the functionality of the flags and you can always refer to the
official documentation of GCC for more details.

3.5 a traditionalist implementer or a kernelist?

Most probably you are objecting, “kernelist is not even a word!” I
know, even my poor spell checker is shocked! Just bear with me a
little bit and let me show you what I mean by the term kernelist.

In our journey of creating an operating system kernel we may ask
ourselves, what is our role exactly? There are two possible roles that
I would like to focus on, the first one is being a traditionalist imple-
menter (for short: traditionalist). What I mean by the traditionalist is
the one who writes the code of the kernel without focusing too much
on the design of the kernel and the philosophical questions about that
kernel, examples of these questions are “What is the problem that the
kernel will solve?”, “How to design its architecture to accomplish its
goal” and so on, also the traditionalist tends to implement already
well-known solutions that have been used many years with no or little
changes. The kernelist, on the other hand, is the person who takes
care of the questions about kernel’s design and the new solutions
for the problems and tries to answer these questions and presents
a suitable kernel’s design and solutions for specific problems. For
example, writing a Unix-like kernel is the job of traditionalist, since
the architecture of Unix is already designed by kernelists to solve
specific problems.

Our goal from this book is to learn how to write an operating system
kernel with a traditional design and no new ideas, so, we are taking
the role of a traditionalist, the design of 539kernel is too simple and it
solves no specific problem in a novel way, instead it uses the concepts
that are already there and used by many operating systems as you will
see in the next chapters, also it doesn’t focus on some new problem to
solve nor a new solution for an old problem, this makes 539kernel a
working kernel that solves the same problems that other kernels solve
by using the same methods that other kernels use, the advantage of
this design is making 539kernel easy to implement which means it
is a good starting point to learn about operating system kernels and
that’s the goal of this book.

The natural question for someone, who would like to continue in the
journey of operating system kernels, to ask herself after implementing
a basic kernel, “What’s next?” and here where a kernelist is born! In
fact, there are many real world problems in computing that need to be
solved, also, there are many innovative ideas that need to be created,
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furthermore, there are many good ideas that have been presented by
someone else but need to be realized in the real world systems, a lot
of aforementioned can be found in the scientific papers 25.

The kernelist doesn’t necessarily innovate new solutions by himself,
but he can use modern solutions that have been proposed by other
kernelist to implement and design a kernel with modern innovative
and useful ideas instead of reimplementing the traditional solutions
that have been with us for 60 years over and over again.

After reading this book to learn about creating a kernel and you
would like to continue the journey, I encourage you to consider the
role of kernelist. Using what you have learned to solve real-world
problem is a good idea, and the world needs this kind of orientation.
Although this is a book of traditionalist more that a kernelist, I’ve
dedicated chapter 7 for those who would like to, at least, take a look
on being kernelist.

25 In fact, I’ve started a project that generalize this thought and I called it
ResearchCoders. If you are interested in finding and implementing new ideas that
solve real-world problems you may would like to check the website of the project
(https://researchcoders.dev)

https://researchcoders.dev
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C H A P T E R 4 : P R O C E S S M A N A G E M E N T

4.1 introduction

In the previous chapters, we have discussed the topics that helped us
to understand the basics that are needed to initialize the environment
for a 32-bit protected mode kernel running on x86. Starting from this
chapter we are going to discuss the topics that belong to the kernel
itself, that is, the responsibilities of the kernel. We will start with a
quick look on the theories that are traditionally presented on academic
textbooks, then we move to the practical part in order to implement
these theories (or part of them) in 539kernel. A good place to start
from is process management.

A kernel has multiple responsibilities, one of these responsibilities
is to manage the resources and make sure they are managed well. One
important resource of the computers is the time of the processor (AKA:
CPU time) which is the component that executes the code of software
that we would like to run on our machines. Process management is
the the part that studies how a kernel should manage and distribute
CPU time among a bunch of processes.

4.2 the most basic work unit : a process

Process is the term which is used in operating systems literature to
describe a running program. In the previous chapters of this book
we have encountered the concept of the process multiple times and
you may recall from these encounters that every user-space software
that we use in our computers is a soulless sequence of bytes that are
stored somewhere in the hard disk. When we decide to use a specific
software, for example, the web browser, the first thing we do is to
open it either through double clicking on its icon in graphical user
interfaces or through writing its command in the shell. When we
do that, the kernel is needed to be called through a system call and
takes the responsibility of “opening” this software, we can consider
system calls as functions which are provided by the kernel to expose
its services for the user-space software, one way of implementing
system calls is to use interrupts, exactly the same way that we have
used with BIOS.

117
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However, there are multiple steps that are needed to be performed
to open the software, for example, reading its data from disk, but
our current focus is on process-related parts, eventually, the kernel
creates a new process for the software that we requested to open. The
kernel maintains a table of all system processes, each entry represents
a process and contains the information which is needed by the kernel
to manage the process, this data structure which stores a process
information is known as process control block (PCB), so, the processes
table will have a process control block as an entry for each process in
the system.

Of course, the most important part of the process is the code of the
software that this process represents and its data, both data 1 and code
should be loaded into memory, after that, its code can be executed
by the processor. We need to note that a process is an instance of
a software, in other words, one software can be opened more than
one time with a separated process for each one, for example, opening
multiple windows of the web browser on the same time, the software
is one which is the web browser and it is represented by the binary
file which is stored in the hard disk, but each opened window is a
separated process and each process’ content is stored in the main
memory. While the described concept is well-known by the term
“process”, specially in the literature, other terms can be used for the
same concept, for example task and job are other words which are used
to point to the same concept.

Each process is known to have a state, when it is loaded to the
memory its state will be indicated by the kernel as ready and can be
run anytime, when the CPU time is given to a process its state will be
running. Also, the state of the process can be waiting, an example of a
situation where a process state is changed to waiting state is when it
performs I/O request (e.g. read from the hard disk), its state will be
waiting since it’s waiting for the I/O device to fulfill the request. The
state information about a process is stored in the process control block
which is, as mentioned earlier, an entry in the processes table.

Sometimes, a bunch of processes in a system need to communicate
with each other to share some data or tell each other to perform a
specific operation, this led to a broad topic known as inter-process
communication (IPC) which provides mechanisms to make this type of
communication possible. The applications of IPC is not restricted to
operating system kernels, they are used in distributed computing for
instance. One well known mechanism of IPC is shared memory, that is,
a region of the memory is made accessible by more than one process,
they can read and write to this region in order to share data. The
ability to write to same place by more than one process can cause a

1 We mean static data here, which are contained in the binary file of the software.
While the data that are generated by the running process are not loaded from the
binary file, instead they are created while the code is running (e.g. local variables in
the stack).
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problem known as race condition, given a shared variable, the situation
which two or more processes try to change the value of this variable
at the same moment is known as race condition. There are multiple
solutions for this problem and this topic is studied in a branch known
concurrency control which is a shared topic by many applications, one
of them is database management systems (DBMS) which needs these
mechanisms when two users try to update the same row at the same
time.

Processes are not the only entities that need to communicate, there is
another unit of work which is known as thread and it can be described
as lightweight process. A process can have more than one thread and
when a software uses more than one thread to do its job, it is described
as multithreaded. Threads are everywhere in our usage of computers,
and a world without them is unimaginable. For example, when you
use a text editor, the main thread of the software lets you write your
text, but when you click on save icon a separated thread within the
text editor’s process is used to perform this operation. Furthermore,
another thread can be used for the spell checker while you are typing.
If all there functionalities were on one thread, you will need to wait
each one of them to finish in order to let you to perform the other
functionality, that is, the software without threads is going to run
sequentially while threads provide us concurrency within one process.
Threads and processes have many similarities, for example, both of
them are there to be executed, hence, they need to use the processor
and both of them need to be scheduled to give every one of them time
from the processor. In contrast to processes, threads run as a part of
same process and they share the same address space which makes the
communication between them much easier since they can reach the
same memory by default.

4.3 the basics of multitasking

When we write a kernel, multiple design questions should be answered
2 and the part of process management is not an exception of that. There
are multiple well-known answers for some basic design questions,
each one of those answers tries to solve a problem that faced the person
who gave us this answer, for example, one of well-known features of
the modern operating systems is multitasking which is the successor
of monotasking and both of them can be considered as answers for a
design question in operating systems. In multitasking environment,
the system can run multiple processes at the same time even if there is
only one processor available, while in monotasking environment, the
system can run only one process at a time until this process finishes
its work or the user closes it, only after that, another process can be
run.

2 Remember the job of a kernelist!
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4.3.1 Mutliprogramming & Time-Sharing

In the days of monotasking, we were facing a serious problem that led
to the birth of multitasking. It has been noticed that the processes tend
to have idle time, for example, when the process is waiting for the
hard disk to fetch some stored data, the process will be idle while it is
taking over the processor, that is, the processor is under the process’
control which is currently doesn’t use the CPU time for something
useful, that means, in this case, we are wasting the valuable resource
of CPU time in waiting for some action to finish, we need to utilize
the processor as much as possible, and here came the solution of this
problem by letting the kernel to have a list of processes that are ready
to run.

Assuming the machine has just one processor with one core, the
CPU time will be given to, say process A, for some time and at some
point of running time the process A requests from the disk some data
and due to that it becomes idle waiting for disk to respond. Instead
of keep the control of the processor under the process A, which is
doing nothing but waiting right now, the kernel suspends process
A and gives the CPU time to another ready process, say process B,
this switching between two processes is known as context switch. The
process B is going to use the processor while process A is waiting for
the disk to respond. At some point, process B will perform some action
that makes it idle which means that the kernel can switch to another
ready process and so on. This solution is known as multiprogramming.
To sum it up, we have a list of ready processes, choose one, give it the
CPU time and wait for it until it becomes idle, since it’s waiting for
something switch to another process which is not idle an so on.

Better yet, multiprogramming has been extended to utilize the
processor more efficiently. Instead of waiting for the currently running
process to perform something which makes it idle, why don’t we
suspend it after some period of running time whether it is idle or
not and switch to another process? This solution is known as time
sharing which is with multiprogramming represent the scheme that
modern operating systems use for multitasking. In time sharing, a list
of ready processes is available for the kernel, in each unit of time, say
for example, every 1 second (in practice, it is shorter) the currently
running process is suspended by the kernel and another process is
given the CPU time and so on.

4.3.2 Process Scheduling

You may recall from the previous chapter 3 the system timer which
emits an interrupt every unit of time, this interrupt can be used to
implement time sharing in order to switch between the processes of
the system, of course the kernel needs an algorithm to choose which
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process to run next, this kind of algorithms are known as scheduling
algorithms and in general this part of the topic is known as scheduling
in which we try to find the best way of choosing the next process to
run in order to satisfy our requirements.

The scheduler is the part of the kernel that schedules the next process
by using some specific scheduling algorithm, that is, it decides the
next process to run based and performs the context switching. There
are many scheduling algorithms to deal with different requirements
and one of them is known as round-robin. In this algorithm, each
process is given a fixed amount of CPU time known as quantum, when
the running process finishes its quantum the scheduler will be called
and the CPU time will be given to the next process in the list until its
quantum finishes and so on until the schedule reaches to the end of
the process list where it starts with the first process again. The value of
the quantum is decided by the kernelist, for example 50 milliseconds,
which means each process will run 50 milliseconds then suspended to
run the next one on the list and so on.

4.3.3 Process Context

As you know, when a process is executing, it can use the registers of
the processor (e.g. EAX) to store its own data. Also, it may change the
values of segment registers in case it is running under a system that
employs segmented-memory instead of flat memory model. Further-
more, the value of the instruction pointer EIP will contain an address
which belong to the process’ address space. All these values that are
related to a process and stored inside the registers of the processor are
known as process context, another term which is process state may also
be used in some places to mean the same thing, but to not confuse
this concept with the one that we have defined the term “state” with
previously, it is better to use the term process context.

When a scheduler decides to change the currently running process,
let’s call it A, through a context switch, a copy of the context of the
process A should be taken and stored somewhere, that is, a snapshot
of the last context of A is taken before switching to another process.
By taking this snapshot, it will be easy later to resume process A by
just loading its context to the processor’s register and jump to the the
value of EIP which has been just loaded.

4.3.4 Preemptive & Cooperative Multitasking

Both multiprogramming and time-sharing solutions give us a type
of multitasking known as preemptive multitasking, the processes are
forced by the kernel to give the CPU time to another process and no
process can take over the processor for the whole time. Another type
of multitasking is known as cooperative multitasking (or non-preemptive
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multitasking), in this type the context switching is not perform forcibly,
instead, the currently running process should cooperate and voluntar-
ily tells the kernel when it should be suspended and a context switch
should be performed. One of the obvious problems of this way, at
least for the well-known workloads (e.g. servers or desktops), that a
process, which runs a code that has been written by someone we don’t
know, cannot be trusted. It simply may take over the CPU time and
never cooperate and give it up due to an error in the code or even in
purpose 3.

4.4 multitasking in x86

With the assistance of system timer, multitasking can be realized
fully by the kernel, that is, by the code. This type is known as
software multitasking, the kernel itself is responsible for storing the
list of processes and their related information, also, it’s responsible
for storing a snapshot of process context before performing context
switching and resuming this snapshot when the process is resumed.
On the other hand, In x86 some features are provided to handle these
things with the assistance of the processor itself, this type is known as
hardware multitasking.

While hardware multitasking is available in x86, the modern operat-
ing system kernels don’t use it, instead, multitasking is implemented
by the kernel itself. One reason to take this decision is portability.
Modern kernels tend to run on more than one architecture and not
only x86, by using as little as possible of architecture’s features it will
be easier to port a kernel to other architectures.

In this section, we are going to cover the basics of hardware multi-
tasking in x86 which are needed to initialize the environment to make
it work correctly, in the same way as GDT with flat memory model.
Furthermore, I think knowing the other available options is important,
especially for kernelists. In 539kernel we are going to to implement
software multitasking as in modern kernels.

4.4.1 Task-State Segments

The most basic component of hardware multitasking in x86 is known
as task-state segment (TSS) 4 which is a segment in the memory as any
other code or data segment, it has what other segments have, a base
address, a limit and properties. The difference from code and data

3 You may ask who would use cooperative multitasking and give this big trust to the
code of the software! In fact, the versions of Windows before 95 used this style of
multitasking, also, Classic Mac OS used it. Why? You may ask, I don’t know exactly,
but what I know for sure is that humanity is in a learning process!

4 In x86, the term task is used instead of process.
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Figure 26: Figure 1: The Structure of Task-State Segment

segments is that TSS is a system segment 5, this segment stores the
context of a specific process.

In hardware multitasking, each process should has its own TSS, and
each TSS should has an entry in the GDT table, that is, TSS descriptor. A
special register known as task register should contain the segment se-
lector of the currently running process’s TSS descriptor, the instruction
ltr is used to store a value in this register.

Figure 1 shows the structure of a task-state segment, as you can see,
most of the fields are values of registers while the others are out of our
topic’s range except for previous task link which will be covered in
a moment. You can see that stack segment register and stack pointer
register have four entries instead of one, SS, SS0, SS1 and SS2 for stack
segment register. ESP, ESP0, ESP1 and ESP2 for stack pointer register.
These fields point to the stack that should be used when the process
is in a specific privilege level, for example, SS0:ESP0 will be used as
the stack of the process when it switches to privilege level 0, when it
switches back to privilege level 3 the stack SS:ESP will be used instead,
and the same is applicable to the other similar fields. If we intend to
implement software multitasking, the sole reason of defining at least
one TSS is due to these fields, when a switch between privilege levels
occurs, the processor needs a TSS to use these fields from it in order

5 In chapter 2 we have seen that there are two types of segments in x86, application
segments such as code, data and stack segment. And system segments and they are
LDT and TSS.



4.5 process management in 539kernel 124

to switch between stacks. This is needed only when the system runs
user-space code, that is, privilege level 3 code.

The structure of TSS descriptor in GDT table is same as the segment
descriptor that we have already explained in chapter 2. The only
difference is in the type field which has the static binary value 010B1

in TSS descriptor where B in this value is known as B flag, or busy flag
which should be 1 when the process that this TSS descriptor represents
is active and 0 when it is inactive.

4.4.2 Context Switching in x86

One way of switching from a process to another 6 in x86 hardware
multitasking is to call or jump to TSS descriptor in GDT, assume that
the system timer caused the call of the scheduler which selects process
A as the next process to run, the scheduler can cause context switch
by using the instructions call or jmp and the operand should be the
segment selector of A’s TSS descriptor. In this way, the processor is
going to take a copy of currently running process (call it B) and store
it in B’s own TSS, then the values in A’s TSS will be loaded into the
processor registers and then execution of A begins.

Another way of context switching in x86 hardware multitasking is
to call or jump to a task gate. In chapter 2, when we discussed the
descriptors of IDT, we have said that one type of descriptor that can be
defined is a task gate descriptor. This kind of descriptors is considered
as a separated process by the processor, when we jump or call a task
gate, the previously explained mechanism of task switching will be
performed. Task gates can also be defined in GDT and LDT. In the IDT

table of 539kernel we have chosen to not define the interrupts as task
gates, we don’t want to perform a context switch with each interrupt.

When a process is called instead of jumped to, eventually, it should
return to the caller process by using the instruction iret, for the
processor, to be able to decide which task is the caller, the previous
task link field of the callee’s TSS will be updated to contain the segment
selector of the caller process. In this way, when iret instruction is
executed, it will be easy to know to which process the processor
should switch back to.

4.5 process management in 539kernel

The final result of this section is what I call version T of 539kernel
which has a basic multitasking capability. The multitasking style that
we are going to implement is time-sharing multitasking. Also, instead
of depending on x86 features to implement multitasking in 539kernel,
a software multitasking will be implemented. The final Makefile of
version T is provided in the last subsection, however, if you wish

6 In x86, context switch is known as task switch.
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to build and run the kernel incrementally after each change on the
progenitor you can refer to that Makefile and add only the needed
instructions to build the not ready yet version T that you are building.
For example, as you will see in a moment new files screen.c and
screen.h will be added in version T as a first increment, to run the
kernel after adding them you need to add the command to compile
this new file and link it with the previous files, you can find these
commands in the last version of Makefile as we have said before.

Our first step of this implementation is to setup a valid task-state
segment, while 539kernel implements a software multitasking, a valid
TSS is needed. As we have said earlier, it will not be needed in our
current stage but we will set it up anyway. Its need will show up
when the kernel lets user-space software to run. After that, basic data
structures for process table and process control block are implemented.
These data structures and their usage will be as simple as possible
since we don’t have any mean for dynamic memory allocation, yet!
After that, the scheduler can be implemented and system timer’s
interrupt can be used to enforce preemptive multitasking by calling
the scheduler every period of time. The scheduler uses round-robin
algorithm to choose the next process that will use the CPU time, and
the context switching is performed after that. Finally, we are going to
create a number of processes to make sure that everything works fine.

Before getting started in the plan that has been just described, we
need to organize our code a little bit since it’s going to be larger
starting from this point. New two files should be created, screen.c
and its header file screen.h. We move the printing functions that
we have defined in the progenitor and their related global variables
to screen.c and their prototypes should be in screen.h, so, we can
include the latter in other C files when we need to use the printing
functions. The following is the content of screen.h.

1 volatile unsigned char *video;

2

3 int nextTextPos;

4 int currLine;

5

6 void screen_init();

7 void print( char * );

8 void println();

9 void printi( int );

As you can see, a new function screen_init has been introduced
while the others are same as the ones that we already wrote. The
function screen_init will be called by the kernel once it starts run-
ning, the function initializes the values of the global variables video,
nextTextPos and currLine. Its code is the following and it should be
in screen.c, of course in the beginning of this file, screen.h should
be included by using the line #include "screen.h".
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1 void screen_init()

2 {

3 video = 0xB8000;

4 nextTextPos = 0;

5 currLine = 0;

6 }

Nothing new in here, just some organizing. Now, the prototypes and
implementations of the functions print, println and printi should
be removed from main.c. Furthermore, the global variables video,
nextTextPos and currLine should also be removed from main.c. Now,
the file screen.h should be included in main.c and in the beginning of
the function kernel_main the function screen_init should be called.

4.5.1 Initializing the Task-State Segment

Setting TSS up is too simple. First we know that the TSS itself is a re-
gion in the memory (since it is a segment), so, let’s allocate this region
of memory. The following should be added at end of starter.asm,
even after including the files gdt.asm and idt.asm. In the following a
label named tss is defined, and inside this region of memory, which
its address is represented by the label tss, we put a doubleword of 0,
recall that a word is 2 bytes while a double-word is 4 bytes. So, our
TSS contains nothing but a bunch of zeros.

1 tss:

2 dd 0

As you may recall, each TSS needs an entry in the GDT table, after
defining this entry, the TSS’s segment selector can be loaded into the
task register. Then the processor is going to think that there is one
process (one TSS entry in GDT) in the environment and it is the current
process (The segment selector of this TSS is loaded into task register).
Now, let’s define the TSS entry in our GDT table. In the file gdt.asm we
add the following entry at the end of the label gdt. You should not
forget to modify the size of GDT under the label gdt_size_in_bytes
under gdtr since the sixth entry has been added to the table.

1 tss_descriptor: dw tss + 3, tss, 0x8900, 0x0000

Now, let’s get back to starter.asm in order to load TSS’ segment
selector into the task register. In start routine and below the line
call setup_interrupts we add the line call load_task_register

which calls a new routine named load_task_register that loads the
task register with the proper value. The following is the code of this
routine that can be defined before the line bits 32 in starter.asm.

1 load_task_register:

2 mov ax, 40d

3 ltr ax
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4

5 ret

As you can see, it’s too simple. The index of TSS descriptor in GDT

is 40 = (entry 6 * 8 bytes)- 8 (since indexing starts from 0).
So, the value 40 is moved to the register AX which will be used by the
instruction ltr to load the value 40 into the task register.

4.5.2 The Data Structures of Processes

When we develop a user-space software and we don’t know the size
of the data that this software is going to store while it’s running, we
usually use dynamic memory allocation, that is, regions of memory
are allocated at run-time in case we need to store more data that we
didn’t know that it will be needed to be stored. We have encountered
the run-time stack previously, and you may recall that this region
of memory is dedicated for local variables, parameters and some
information that make function invocation possible.

The other region of a process is known as run-time heap, which is
dedicated for the data that we decided to store in memory while the
software is running. In C, for instance, the function malloc is used to
allocate bytes from the run-time heap and maintains information about
free and used space of the heap so in the next use of this function
the allocation algorithm can decide which region should be allocated
based on the required bytes to allocate.

This part that allocates memory dynamically (inside run-time heap)
and manages the related stuff is known as memory allocator and one
of well-known allocators is Doug Lea’s memory allocator. For pro-
gramming languages that run the program by using a virtual machine,
like Java and C#, or by using interpreters like PHP and Python, they
usually provide their users an automatic dynamic memory allocation
instead of the manual memory allocation which is used by languages
such as C, that is, the programmer of these languages don’t need
to explicitly call a function (such as malloc) to allocate memory in
the heap at run-time, instead, the virtual machine or the interpreter
allocates dynamic memory by itself and frees the region of the heap
that are not used anymore through a mechanism known as garbage
collection.

For those who don’t know, in static memory allocation, the size
of data and where will it be stored in the memory are known in
compiling time, global variables and local variables are examples of
objects that we use static memory allocation for them. In dynamic
memory allocation, we cannot decide in compiling time the size of
the data or whether it will be stored in the first place, these important
information will only be known while the software is running, that is,
in run-time. Due to that, we need to use dynamic memory allocation
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for them since this type of allocation doesn’t require these information
in the compiling time.

Processes table is an example of data structures (objects) that we
can’t know its size in compile-time and this information can be only
decided while the kernel is running. Take your current operating
system as an example, you can run any number of processes (to some
limit of course) and all of them will have an entry in the processes
table 7, maybe your system is running just two processes right now
but you can run more and more without the need of recompiling the
kernel in order to increase the size of processes table.

That’s possible due to using dynamic memory allocation when a
new process is created during run-time and that’s by dynamically
allocating a space in the run-time heap through the memory allocator
for this the entry of this new process. When this process finishes its
job (e.g. the user closes the application), the memory region that is
used to store its entry in processes table is marked as free space so
it can be used to store something else in the future, for example, the
entry of another process.

In our current situation, we don’t have any means of dynamic
memory allocation in 539kernel, this topic will be covered when
we start discussing memory management. Due to that, our current
implementations of processes table and process control block are
going to use static memory allocation through global variables. That
of course, restricts us from creating a new process on-the-fly, that is,
at run-time. But our current goal is to implement a basic multitasking
that will be extended later. To start our implementation, we need to
create new two files, process.c and its header file process.h. Any
function or data structure that is related to processes should belong to
these file.

Process Control Block

A process control block (PCB) is an entry in the processes table, it
stores the information that are related to a specific process, the state
and context of the process are examples of these information. In
539kernel, there are two possible states for a process, either a process
is running or ready. When a context switch is needed to be performed,
the context of the currently running process, which will be suspended,
should be stored on its own PCB. Based on our previous discussions,
the context of the process in 539kernel consists the values which were
stored in the processor’s registers before suspending the process.

Each process in 539kernel, as in most modern kernels, has a unique
identifier known as process id or PID for short, this identifier is also
stored in the PCB of the process. Now, let’s define the general structure

7 We already know that keeping an entry of a process in the processes table is important
for the scheduling process and other related processes stuff.
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of PCB and its components in 539kernel. These definitions should
reside in process.h.

1 typedef enum process_state { READY, RUNNING } process_state_t;

2

3 typedef struct process_context

4 {

5 int eax, ecx, edx, ebx, esp, ebp, esi, edi, eip;

6 } process_context_t;

7

8 typedef struct process

9 {

10 int pid;

11 process_context_t context;

12 process_state_t state;

13 int *base_address;

14 } process_t;

As you can see, we start by a type known as process_state_t, any
variable that has this type may have two possible values, READY or
RUNNING, they are the two possible states of a process and this type
will be used for the state field in PCB definition.

Next, the type process_context_t is defined. It represents the
context of a process in 539kernel and you can see it is a C structure
that intended to store a snapshot of x86 registers that can be used by
a process.

Finally, the type process_t is defined which represents a process
control block, that is, an entry in the processes table. A variable of type
process_t represents one process in 539kernel environment. Each
process has a pid which is its unique identifier. A context which is
the snapshot of the environment before suspending the process. A
state which indicates whether a process is READY to run or currently
RUNNING. And finally, a base_address which is the memory address
of the process’ code starting point (think of main() in C), that is, when
the kernel intend to run a process for the first time, it should jump to
the base_address, in other words, set EIP to base_address.

Processes Table

In the current case, as we mentioned earlier, we are going to depend
on static memory allocation since we don’t have any way to employ
dynamic memory allocation. Due to that, our processes table will be
too simple, it is an array of type process_t. Usually, more advanced
data structure is used for the processes list based on the requirements
which are decided by the kernelist, linked list data structure is a well-
known choice. The following definition should reside in process.h.
Currently, the maximum size of 539kernel processes table is 15 pro-
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cesses, feel free to increase it but don’t forget, it will, still, be a static
size.

1 process_t *processes[ 15 ];

4.5.3 Process Creation

Now, we are ready to write the function that creates a new process
in 539kernel. Before getting started in implementing the required
functions, we need to define their prototypes and some auxiliary
global variables in process.h.

1 int processes_count, curr_pid;

2

3 void process_init();

4 void process_create( int *, process_t * );

The first global variable processes_count represents the current
number of processes in the environment, this value will become handy
when we write the code of the scheduler which uses round-robin
algorithm, simply, whenever a process is created in 539kernel, the
value of this variable is increased and since deleting a process will not
be implemented for the sake of simplicity, the value of this variable
will not be decreased anywhere in the current code of 539kernel.

The global variable curr_pid contains the next available process
identifier that can be used for the next process that will be created.
The current value of this variable is used when creating a new process
and its value is increased by one after completing the creation.

The function process_init is called when the kernel starts, and it
initializes the process management subsystem by just initializing the
two global variables that we mentioned.

The function process_create is the one that creates a new process
in 539kernel, that is, it is equivalent to fork in Unix systems. As you
can see, it takes two parameters, the first one is a pointer to the base
address of the process, that is, the starting point of the process’ code.
The second parameter is a pointer to the process control block, as
we have said, currently, we use static memory allocation, therefore,
each new PCB will be either stored in the memory as a local or
global variables, so, for now, the caller is responsible for allocating
a static memory for the PCB and passing its memory address in the
second parameter. In the normal situation, the memory of a PCB is
allocated dynamically by the creation function itself, but that’s a story
for another chapter. The following is the content of process.c as we
have described.

1 #include "process.h"

2

3 void process_init()
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4 {

5 processes_count = 0;

6 curr_pid = 0;

7 }

8

9 void process_create( int *base_address, process_t *process )

10 {

11 process->pid = curr_pid++;

12

13 process->context.eax = 0;

14 process->context.ecx = 0;

15 process->context.edx = 0;

16 process->context.ebx = 0;

17 process->context.esp = 0;

18 process->context.ebp = 0;

19 process->context.esi = 0;

20 process->context.edi = 0;

21 process->context.eip = base_address;

22

23 process->state = READY;

24 process->base_address = base_address;

25

26 processes[ process->pid ] = process;

27

28 processes_count++;

29 }

In process_create, a new process identifier is assigned to the new
process. Then the context is initialized, this structure will be used later
in context switching, either by copying the values from the processor
to the structure or vice versa. Since the new process has not been run
yet, hence, it didn’t set any value to the registers, then we initialize
all general purpose registers with 0, later on, when this process runs
and the scheduler decides to suspend it, the values that this process
wrote on the real registers will be copied in here. The structure field
of program counter EIP is initialized with the starting point of the
process’ code, in this way we can make sure that when the scheduler
decides to run this process, it loads the correct value to the register
EIP.

After initializing the context, the state of the process is set as READY

to run and the base address of the process is stored in a separate field.
Then, the freshly-created PCB is added to the processes list and finally
the number of processes in the system is increased by one.

That’ all we need for now to implement multitasking, in real cases,
there will be usually more process states such as waiting, the data
structures are allocated dynamically to make it possible to create
virtually any number of processes, the PCB may contains more fields
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and more functions to manipulate processes table (e.g. delete process)
are implemented. However, our current implementation, though too
simple, it is enough as a working foundation. Now, in main.c, the
header file process.h is needed to be included, and the function
process_init should be called in the beginning of the kernel, after
the line screen_init();.

4.5.4 The Scheduler

Right now, we have all needed components to implement the core
of multitasking, that is, the scheduler. As mentioned multiple times
before, round-robin algorithm is used for 539kernel’s scheduler.

Let’s present two definitions to make our next discussion more clear.
The term current process means the process that is using the processor
right now, at some point of time, the system timer emits an interrupt
which suspends the current process and calls the kernel to handle
the interrupt, In this case the kernel is going to call the scheduler, at
this point of time, we keep the same term for the process which was
running right before calling the kernel to handle the interrupt, we
call it the current process. By using some algorithm, the scheduler
chooses the next process, that is, the process that will run after the
scheduler finishes its work and the kernel returns the processor to the
processes. After choosing the next process, performing the context
switching and jumping to the process code, this chosen process will
be the current process instead of the suspended one, and it will be the
current process until the next run of the scheduler and so on.

Now, we are ready to implement the scheduler, let’s create a new
file scheduler.c and its header file scheduler.h for the new code.
The following is the content of the header file.

1 #include "process.h"

2

3 int next_sch_pid, curr_sch_pid;

4

5 process_t *next_process;

6

7 void scheduler_init();

8 process_t *get_next_process();

9 void scheduler( int, int, int, int, int, int, int, int, int );

10 void run_next_process();

First, process.h is included since we need to use the structure
process_t in the code of the scheduler. Then three global variables
are defined, the global variable next_sch_pid stores the PID of the
next process that will run after next system timer interrupt, while
curr_sch_pid stores the PID of the current process. The global vari-
able next_process stores a reference to the PCB of the next process,
this variable will be useful when we want to move the control of the
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processor from the kernel to the next process which is the job of the
function run_next_process.

The function scheduler_init sets the initial values of the global
variables, same as process_init, it will be called when the kernel
starts.

The core function is scheduler which represents 539kernel’s sched-
uler, this function will be called when the system timer emits its
interrupt. It chooses the next process to run with the help of the
function get_next_process, performs context switching by copying
the context of the current process from the registers to the memory
and copying the context of the next process from the memory to the
registers. Finally, it returns and run_next_process is called in order to
jump the the next process’ code. In scheduler.c, the file scheduler.h

should be included to make sure that everything works fine. The
following is the implementation of scheduler_init.

1 void scheduler_init()

2 {

3 next_sch_pid = 0;

4 curr_sch_pid = 0;

5 }

It’s too simple function that initializes the values of the global
variables by setting the PID 0 to both of them, so the first process that
will be scheduled by 539kernel is the process with PID 0.

Next, is the definition of get_next_process which implements
round-robin algorithm, it returns the PCB of the process that should
run right now and prepare the value of next_sch_pid for the next
context switching by using round-robin policy.

1 process_t *get_next_process()

2 {

3 process_t *next_process = processes[ next_sch_pid ];

4

5 curr_sch_pid = next_sch_pid;

6 next_sch_pid++;

7 next_sch_pid = next_sch_pid % processes_count;

8

9 return next_process;

10 }

Too simple, right! 8 If you haven’t encountered the symbol %

previously, it represents an operation called modulo which gives the
remainder of division operation, for example, 4 % 2 = 0 because the
reminder of dividing 4 on 2 is 0, but 5 % 2 = 1 because 5 / 2 = 2

and remainder is 1, so, 5 = ( 2 * 2 )+ 1 (the remainder).
In modulo operation, any value n that has the same position of 2

in the previous two examples is known as modulus. For instance, the

8 Could be simpler, but the readability is more important here.
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modulus in 5 % 3 is 3 and the modulus in 9 % 10 is 10 and so on.
In some other places, the symbol mod is used to represent modulo
operation instead of %.

The interesting thing about modulo that its result value is always
between the range 0 and n - 1 given that n is the modulus. For
example, let the modulus be 2, and we perform the following modulo
operation x % 2 where x can be any number, the possible result values
of this operation are only 0 or 1. Using this example with different
values of x gives us the following results, 0 % 2 = 0, 1 % 2 = 1, 2
% 2 = 0, 3 % 2 = 1, 4 % 2 = 0, 5 % 2 = 1, 6 % 2 = 0 and so on to
infinity!

As you can see, modulo gives us a cycle that starts from 0 and
ends at some value that is related to the modulus and starts all over
again with the same cycle given an ordered sequence of values for
x, sometimes the analog clock is used as metaphor to describe the
modulo operation. However, in mathematics a topic known as modular
arithmetic is dedicated to the modulo operation. You may noticed that
modulo operation can be handy to implement round-robin algorithm.

Let’s get back to the function get_next_process which chooses
the next process to run in a round-robin fashion. As you can see, it
assumes that the PID of the next process can be found directly in
next_sch_pid. By using this assumption it fetches the PCB of this pro-
cess to return it later to the caller. After that, the value of curr_sch_pid
is updated to indicate that, right now, the current process is the one
that we just selected to run next. The next two lines are the core of
the operation of choosing the next process to run, it prepares which
process will run when next system timer interrupt occurs.

Assume that the total number of processes in the system is 4, that is,
the value of processes_count is 4, and assume that the process that
will run in the current system timer interrupt has the PID 3, that is
next_sch_pid = 3, PIDs in 539kernel start from 0, that means there is
no process with PID 4 in our example and process 3 is the last one.

In line next_sch_pid++ the value of the variable will be 4, and
as we mentioned, the last process is 3 and there is no such process
4, that means we should start over the list of processes and runs
process 0 in the next cycle, we can do that simply by using modulo
on the new value of next_sch_pid with the modulus 4 which is the
number of processes in the system process_count, so, next_sch_pid
= 4 % 4 = 0. In the next cycle, process 0 will be chosen to run, the
value of next_sch_pid will be updated to 1 and since it is lesser than
process_count it will be kept for the next cycle. After that, process
1 will run and the next to run will be 2. Then process 2 will run
and next to run is 3. Finally, the same situation that we started our
explanation with occurs again and process 0 is chosen to run next.
The following is the code of the function scheduler.
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1 void scheduler( int eip, int edi, int esi, int ebp, int esp, int ebx,

int edx, int ecx, int eax )

2 {

3 process_t *curr_process;

4

5 // ... //

6

7 // PART 1

8

9 curr_process = processes[ curr_sch_pid ];

10 next_process = get_next_process();

11

12 // ... //

13

14 // PART 2

15

16 if ( curr_process->state == RUNNING )

17 {

18 curr_process->context.eax = eax;

19 curr_process->context.ecx = ecx;

20 curr_process->context.edx = edx;

21 curr_process->context.ebx = ebx;

22 curr_process->context.esp = esp;

23 curr_process->context.ebp = ebp;

24 curr_process->context.esi = esi;

25 curr_process->context.edi = edi;

26 curr_process->context.eip = eip;

27 }

28

29 curr_process->state = READY;

30

31 // ... //

32

33 // PART 3

34

35 asm( " mov %0, %%eax; \

36 mov %0, %%ecx; \

37 mov %0, %%edx; \

38 mov %0, %%ebx; \

39 mov %0, %%esi; \

40 mov %0, %%edi;"

41 : : "r" ( next_process->context.eax ), "r" (

next_process->context.ecx ), "r" (

next_process->context.edx ), "r" (

next_process->context.ebx ),
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42 "r" ( next_process->context.esi ), "r" (

next_process->context.edi ) );

43

44 next_process->state = RUNNING;

45 }

I’ve commented the code to divide it into three parts for the sake of
simplicity in our discussion. The first part is too simple, the variable
curr_process is assigned to a reference to the current process which
has been suspended due to the system timer interrupt, this will become
handy in part 2 of scheduler’s code, we get the reference to the
current process before calling the function get_next_process because,
as you know, this function changes the variable of current process’
PID (curr_sch_pid) from the suspended one to the next one 9. After
that, the function get_next_process is called to obtain the PCB of the
process that will run this time, that is, the next process.

As you can see, scheduler receives nine parameters, each one of
them has a name same as one of the processor’s registers. We can
tell from these parameters that the function scheduler receives the
context of the current process before being suspended due to system
timer’s interrupt. For example, assume that process 0 was running,
after the quantum finished the scheduler is called, which decides that
process 1 should run next. In this case, the parameters that have been
passed to the scheduler represent the context of process 0, that is, the
value of the parameter EAX will be same as the value of the register EAX
that process 0 set at some point of time before being suspended. How
did we get these values and pass them as parameters to scheduler?
This will be discussed later.

In part 2 of scheduler’s code, the context of the suspended process,
which curr_process represents it right now, is copied from the proces-
sor into its own PCB by using the passed parameter. Storing current
process’ context into its PCB is simple as you can see, we just store
the passed values in the fields of the current process structure. These
values will be used later when we decide to run the same process.
Also, we need to make sure that the current process is really running
by checking its state before copying the context from the processor
to the PCB. At the end, the state of the current process is switched
from RUNNING to READY.

Part 3 performs the opposite of part 2, it uses the PCB of the next
process to retrieve its context before the last suspension, then this
context will be copied to the registers of the processor. Of course,
not all of them are being copied to the processor, for example, the
program counter EIP cannot be written to directly, we will see later
how to deal with it. Also, the registers that are related to the stack, ESP
and EBP were skipped in purpose. As a last step, the state of the next

9 And that’s why the global variables are considered evil.
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process is changed from READY to RUNNING. The following is the code
of run_next_process which is last function remains in scheduler.c.

1 void run_next_process()

2 {

3 asm( " sti; \

4 jmp *%0" : : "r" ( next_process->context.eip ) );

5 }

It is a simple function that executes two assembly instructions. First
it enables the interrupts via the instruction sti, then it jumps to the
memory address which is stored in the EIP of next process’ PCB. The
purpose of this function will be discussed after a short time.

To make everything runs properly, scheduler.h need to be in-
cluded in main.c, note that, when we include scheduler.h, the line
which includes process.h should be remove since scheduler.h al-
ready includes it. After that, the function scheduler_init should
be called when initializing the kernel, say after the line which calls
process_init.

Calling the Scheduler

“So, how the scheduler is being called” you may ask. The answer to
this question has been mentioned multiple times before. When the
system timer decides that it is the time to interrupt the processor, the
interrupt 32 is being fired, this point of time is when the scheduler
is being called. In each period of time the scheduler will be called to
schedule another process and gives it CPU time.

In this part, we are going to write a special interrupt handler for
interrupt 32 that calls 539kernel’s scheduler. First we need to add
the following lines in the beginning of starter.asm 10 after extern

interrupt_handler.

1 extern scheduler

2 extern run_next_process

As you may guessed, the purpose of these two lines is to make the
functions scheduler and run_next_process of scheduler.c usable
by the assembly code of starter.asm. Now, we can get started to
implement the code of interrupt 32’s handler which calls the scheduler
with the needed parameters. In the file idt.asm the old code of the
routine isr_32 should be changed to the following.

1 isr_32:

2 ; Part 1

3

4 cli ; Step 1

5

10 I’m about to regret that I called this part of the kernel the starter! obviously it’s more
than that!
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6 pusha ; Step 2

7

8 ; Step 3

9 mov eax, [esp + 32]

10 push eax

11

12 call scheduler ; Step 4

13

14 ; ... ;

15

16 ; Part 2

17

18 ; Step 5

19 mov al, 0x20

20 out 0x20, al

21

22 ; Step 6

23 add esp, 40d

24 push run_next_process

25

26 iret ; Step 7

There are two major parts in this code, the first one is the code
which will be executed before calling the scheduler, that is, the one
before the line call scheduler. The second one is the code which
will be executed after the scheduler returns.

The first step of part one disables the interrupts via the instruction
cli. When we are handling an interrupt, it is better to not receive any
other interrupt, if we don’t disable interrupts here, while handling
a system timer interrupt, another system timer interrupt can occur
even before calling the scheduler in the first time, you may imagine
the mess that can be as a result of that.

Before explaining the steps two and three of this routine, we need
to answer a vital question: When this interrupt handler is called, what
the context of the processor will be? The answer is, the context of the
suspended process, that is, the process that was running before the
system timer emitted the interrupt. That means all values that were
stored by the suspended process on the general purpose registers will
be there when isr_32 starts executing and we can be sure that the
processor did not change any of these values during suspending the
process and calling the handler of the interrupt, what gives us this
assurance is the fact that we have defined all ISRs gate descriptors as
interrupt gates in the IDT table, if we have defined them as task gates,
the context of the suspended process will not be available directly on
processor’s registers. Defining an ISR descriptor as an interrupt gate
makes the processor to call this ISR as a normal routine by following
the calling convention. It’s important to remember that when we
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discuss obtaining the value of EIP of the suspended process later on
in this section.

By knowing that the context of suspended process is reachable
via the registers (e.g EAX) we can store a copy of them in the stack,
this snapshot will be useful when the scheduler needs to copy the
context of the suspended process to the memory as we have seen, also,
pushing them into stack gives as two more benefits. First we can start
to use the registers in the current code as we like without the fear
of losing the suspended process context, it is already stored in the
stack and we can refer to it anytime we need it. Second, according
to the calling convention that we have discussed in chapter 2 these
pushed values can be considered as parameters for a function that
will be called and that’s exactly how we pass the context of suspended
process to the function scheduler as parameters, simply by pushing
the values of general purpose registers into the stack.

Now, instead of writing 8 push instructions to push these values into
the stack, for example push eax and so on, there is an x86 instruction
named pusha which pushes the current values of all general purpose
registers into the stack, that exactly what happens in the second step of
isr_32 in order to send them as parameters to the function scheduler.
The reverse operation of pusha can be performed by the instruction
popa, that is, the values on the stack will be loaded into the registers.

The instruction pusha pushes the values of the registers in the
following order: EAX, ECX, EDX, EBX, ESP, EBP, ESI and EDI. Based
on the calling convention they will be received as parameters in the
reversed order, that is, the first pushed values will be the last one to
receive, so, the parameter that contains the value of EDI will be before
ESI in the parameters list and so on, you can see that in an obvious
way in the parameters list of the function scheduler.

The only missing piece now is the value of the instruction pointer
EIP, the third step of isr_32 obtains this value. As you know, it is
too important to store the last EIP value of the suspended process, we
need to know where did the execution of the suspended process code
stop so we can resume its work later from the same point, and this
information can be known through EIP.

Not like the general purpose registers, the value of EIP will not
be pushed into the stack by the instruction pusha, furthermore, the
current EIP is by no means a pointer to where the suspended process
stopped, as you know, the current value of EIP is a pointer to the
current instruction which is being executed right now, that is, one of
isr_32 instructions. So, the question is, where can we find the value
of EIP which was there just before the suspended process has been
suspended? The answer again can be found in the calling convention.

Let’s assume that a process named A was running and a system
timer interrupt occurred which caused process A to suspend and
isr_32 to start, as we have mentioned earlier, isr_32 will be called as
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Figure 27: Figure 2: The Stack After Executing the Instruction pusha

a normal routine and the calling convention will be followed by the
processor. Figure 2 shows the stack at the time after executing pusha

in isr_32. As you can see, the context of process A is on the stack,
for example, to reach the value of ESI which was stored right before
the process A has been suspended, we can do that by referring to the
memory address ESP + 4 11, since the current ESP stores the memory
address of the top of the stack, the size of the value of EDI (and all
other registers) is 4 bytes and the value of ESI is next to the top of the
stack.

The same technique can be used with any value in stack. As you
may have noticed in the figure, that the return address to where
process A suspended is stored in the stack, and that’s due to the calling
convention which requires the return address of the caller to be stored
in the stack so we can return to it, as you can see, here, the process A

was considered as the caller and isr_32 as the callee. So, to obtain the
value of process A’s return address, we can do that simply by reading
the value in esp + 32, and that exactly what we have done in the third
step of isr_32 code, we first read this value and then push it into the
stack so the function scheduler can receive it as the first parameter.

The fourth and fifth steps are simple, in the fourth step we call
the function scheduler which we have already discussed, after the
function scheduler returns, we need to tell PIC that we finished the
handling of an IRQ by sending end of interrupt command to the
PIC and that’s what is performed in the fifth step, we have already
discussed sending end of interrupt command to PIC in chapter 3.

The final thing to do after choosing the next process and performing
the context switching is to give a CPU time for the code of the next
process. This is usually performed by jumping to the memory address
in which the selected process where suspended. There are multiple

11 If a new stack frame is created once isr_32 starts then also EBP can be used as a base
address but with different offset than 4 of course as we have explained earlier in
chapter 2. I didn’t initialize a new stack frame here and in all other places to get a
shorter code.
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ways to do that, the way which we have used in 539kernel is to exploit
the calling convention, again.

As we have mentioned before, the return address to the caller is
stored in the stack, in our previous example, the return address to
process A was stored in the stack right before the values of process A

context which have been pushed by the instruction pusha. When a
routine returns by using the instruction ret or iret, this address will
be jumped to, we exploit this fact to make the next process runs after
isr_32 finishes instead of process A, this is too simple to be done, the
return address of process A should be removed from the stack and in
its position in the stack the resume point of the next process is pushed,
that’s what we do in the sixth step of isr_32.

First we remove all values that we have pushed on the stack while
running isr_32, this is performed by just adding 40 to the current
value of ESP, we have already discussed this method of removing
values from the stack, why adding 40? You may ask. The number
of values that have been pushed by the instruction pusha is 8 values,
each one of them of size 4 bytes (32-bit), that means the total size
of them is 4 * 8 = 32. Also, we have pushed the value of EIP which
also has the size of 4 bytes, so, until now the total size of pushed
items in isr_32 is 32 + 4 = 36 and these are all what we have pushed
in purpose, we also need to remove the return address which has
been pushed into the stack before calling isr_32, the size of memory
addresses in 32-bit architecture is 4 bytes (32-bit), that means 36

+ 4 = 40 bytes should be removed from the stack to ensure that we
remove all pushed values with the return address or process A.

After that, we simply push the memory address of the function
run_next_process. In the seventh step, the routine isr_32 returns
indicating that handling an interrupt has been completed, but instead
of returning to the suspended code before calling the interrupt handler,
the code of the function run_next_process will be called, which is, as
we have seen, enables the interrupts again and jumps to the resume
point of the next process. In this way, we have got a basic multitasking!

4.5.5 Running Processes

In our current environment, we will not be able to test our process
management by using the normal ways, I mean, we can’t run a user-
space software to check if its process has been created and being
scheduled or not. Instead, we are going to create a number of processes
by creating their PCBs via process_create function, and their code
will be defined as functions in our kernel, the memory address of these
functions will be considered as the starting point of the process. Our
goal of doing that is just to test that our code of process management
is running well. All code of this section will be in main.c unless
otherwise is mentioned. First, we define prototypes for four functions,
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each one of them represents a separate process, imaging them as a
normal use-space software. These prototypes should be defined before
kernel_main.

1 void processA();

2 void processB();

3 void processC();

4 void processD();

Inside kernel_main, we define four local variables. Each one of
them represents the PCB of one process.

1 process_t p1, p2, p3, p4;

Before the infinite loop of kernel_main we create the four processes
in the system by using the function process_create as the following.

1 process_create( &processA, &p1 );

2 process_create( &processB, &p2 );

3 process_create( &processC, &p3 );

4 process_create( &processD, &p4 );

The code of the processes is the following.

1 void processA()

2 {

3 print( "Process A," );

4

5 while ( 1 )

6 asm( "mov $5390, %eax" );

7 }

8

9 void processB()

10 {

11 print( "Process B," );

12

13 while ( 1 )

14 asm( "mov $5391, %eax" );

15 }

16

17 void processC()

18 {

19 print( "Process C," );

20

21 while ( 1 )

22 asm( "mov $5392, %eax" );

23 }

24

25 void processD()

26 {

27 print( "Process D," );
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28

29 while ( 1 )

30 asm( "mov $5393, %eax" );

31 }

Each process starts by printing its name, then, an infinite loop starts
which keeps setting a specific value in the register EAX. To check
whether multitasking is working fine, we can add the following lines
the beginning of the function scheduler in scheduler.c.

1 print( " EAX = " );

2 printi( eax );

Each time the scheduler starts, it prints the value of EAX of the
suspended process. When we run the kernel, each process is going
to start by printing its name and before a process starts executing the
value of EAX of the previous process will be shown. Therefore, you will
see a bunch of following texts EAX = 5390, EAX = 5391, EAX = 5392

and EAX = 5393 keep showing on the screen which indicates that the
process, A for example in case EAX = 5390 is shown, was running and
it has been suspended now to run the next one and so on.

4.5.6 Finishing up Version T

And we have got version T of 539kernel which provides us a basic
process management subsystem. The last piece to be presented is the
Makefile to compile the whole code.

1 ASM = nasm

2 CC = gcc

3 BOOTSTRAP_FILE = bootstrap.asm

4 INIT_KERNEL_FILES = starter.asm

5 KERNEL_FILES = main.c

6 KERNEL_FLAGS = -Wall -m32 -c -ffreestanding

-fno-asynchronous-unwind-tables -fno-pie

7 KERNEL_OBJECT = -o kernel.elf

8

9 build: $(BOOTSTRAP_FILE) $(KERNEL_FILE)

10 $(ASM) -f bin $(BOOTSTRAP_FILE) -o bootstrap.o

11 $(ASM) -f elf32 $(INIT_KERNEL_FILES) -o starter.o

12 $(CC) $(KERNEL_FLAGS) $(KERNEL_FILES) $(KERNEL_OBJECT)

13 $(CC) $(KERNEL_FLAGS) screen.c -o screen.elf

14 $(CC) $(KERNEL_FLAGS) process.c -o process.elf

15 $(CC) $(KERNEL_FLAGS) scheduler.c -o scheduler.elf

16 ld -melf_i386 -Tlinker.ld starter.o kernel.elf screen.elf

process.elf scheduler.elf -o 539kernel.elf

17 objcopy -O binary 539kernel.elf 539kernel.bin

18 dd if=bootstrap.o of=kernel.img

19 dd seek=1 conv=sync if=539kernel.bin of=kernel.img bs=512 count=8
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20 dd seek=9 conv=sync if=/dev/zero of=kernel.img bs=512 count=2046

21 qemu-system-x86_64 -s kernel.img

Nothing new in here but compiling the new C files that we have
added to 539kernel.
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C H A P T E R 5 : M E M O RY M A N A G E M E N T

5.1 introduction

It’s well-known to us right now that one of most important aspects
in modern operating systems is protecting the memory in a way that
doesn’t allow a process to access or write to the memory of another
process, furthermore, the memory of the kernel should be protected
from the running processes, that is, they should be prevented from
accessing directly the memory of the kernel or writing to the memory
of the kernel. When we use the term memory of the kernel or memory of
the process, we mean the region of the main memory that is being used
by the kernel or the process and all of its data or code is stored in this
region of the memory.

In chapter 2, we have presented the distinction between the logical
view and physical view of the memory and one of the logical views of
the memory has been presented on the same chapter, this logical view
was segmented-memory model. We have seen how the hardware has
employed the protection techniques to provide memory protection
and protect the segments from each other. In the same chapter, we
have presented another logical view of the memory, it is flat-memory
model, which is exactly same as the physical view of the memory. In
this view, the memory is a big bunch of contiguous bytes and each
byte has its unique address that can be used to refer to this byte in
order to read it or to write to it.

We know that modern operating systems use the flat-memory model
and based on that we decided to use this model on 539kernel instead of
the segmented-memory model. Deciding which model to use is the job
of the kernelist. However, unlike segmentation, when we introduced
the flat-memory model, we haven’t shown how the memory can be
protected in it, in this chapter we present one of the methods that can
be used to implement memory protection in flat-memory model. This
technique is known as paging, it is a well-known technique that is used
widely by modern operating systems and it has a hardware support
in x86 architecture.

145
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Figure 28: An Example that Shows Pages and Page Frames

5.2 paging in theory

In paging, the memory of the process (before being loaded to the
physical memory) is divided into a number of fixed size blocks known
as pages, in the same manner, the physical memory is divided into
blocks with the same fixed size, these blocks of physical memory are
known as page frames. Figure 28 shows an example of pages and page
frames, as you can see in the figure, process A is divided into n pages
and the main memory is divided into n page frames, please note that
the both ns shouldn’t necessarily be equal. Because both page and
page frame have the same size, for example 4KB 1, each page can be
loaded exactly into one page frame. To load process A into the memory,
each of its pages should be loaded into a page frame. A page can be
loaded into any page frame, for example, let’s assume we are loading
page 0 of process A and the first free page frame that we found is
page frame 30, then, the page 0 can be loaded into page frame 30. Of
course, the pages of more than one process can be loaded into the
page frames.

A data structure known as page table is used to maintain these in-
formation about the mapping between pages and their corresponding
page frame. Each process has its own page table, in our example of
process A, the information that tells the processor that page 0 can be
found in page frame 30 is stored in process A’s page table. In paging,
any memory address generated by the process to read or write some
data to the memory will be a logical memory address 2, that is, a not
real not physical memory address, it has a meaning for the process
itself, but for the processor it should be translated to the correspond-
ing physical memory address. The page table of the process is used to
perform this translation.

Basically, every generated logical memory address of a process run-
ning in a paging-enabled environment is composed of the following
parts: the page number and the offset. For example, assume a system
which employs paging with length of 2 bytes for memory addresses
3. In this hypothetical system, the format of logical address is the
following, the first byte represents the page number and the second

1 That is, each page is of size 4KB and each page frame is of size 4KB,
2 In x86, this logical memory address is known as linear memory address as we have

discussed earlier in chapter 2.
3 In 32-bit x86 architecture, the length of memory address is 4 bytes = 32 bits, that

is, 2^32 bytes = 4GB are addressable. An example of a memory address in this
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byte represents the offset. Process B is a process that runs in that
system, assume that it performed an instruction to read data from the
following memory address 0150h, this is a logical memory address
that needs to be translated to the physical address to be able to get the
required content. Based on the format of the logical memory addresses
in this system, the first byte of the generated memory address which
is 01h represents the page, that means that the required data is stored
in page 01h = 1d of the process B, but where exactly? According the
the generated address, it is on the offset 50h = 80d of that page.

To perform the translation and get the physical memory address,
we need to know in which page frame the page 1 of process B is
loaded. To answer this question the page table of process B should
be consulted. For each page, there is an entry in the page table that
contains necessary information, and of course one of those information
is the page frame that this page is stored on. This information can
be the page frame number or the base memory address of the page
frame, it doesn’t matter since we can get the base memory address of
the page frame by knowing its number and the size of page frames.
After getting the base memory address, we can combine it with the
required offset to get the physical memory address of the data in
question. The hardware that is responsible for the process of memory
address translation is known as memory management unit (MMU).

Sometimes, the page table is divided into more than one level. For
example, in two-level page table, the entries of the main page table
refers to an entry on another page table that contains the the base
address of the page frame, x86 architecture uses this design, so we are
going to see it on details later on. The reason of using such design
is the large size of page tables for a large main memory. As you
know, the page table is a data structure that should reside in the main
memory itself, and for each page there is an entry in the page table,
in x86 for example, the size of this entry is 8 bytes. Furthermore, the
size a page tend to be small, 4KB is a real example of page size. So, if
4GB is needed to be represented by a page table with 8 bytes of entry
size, then 8MB is needed for this page table which is not a small size
for a data structure needed for each process in the system.

It should be clear by now how paging provides memory protec-
tion. Any memory address that is generated by the process will be
translated to the physical memory by the hardware, there is no way
for the process to access the data of any other process since it knows
nothing about the physical memory and how to reach it. Consider
process C that runs on the same hypothetical system that we have
described above, in the memory location that’s represented by the
physical memory address A1 9Bh there is some important data which
is stored by the kernel and process C wishes to read it. If process C

environment is FFFFFFFFh which is of length 4 bytes and refers to the last byte of
the memory.
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tries the normal way to read from the memory address A1 9Bh the MMU

of the system is going to consider it as a logical memory address, so,
the page table of process C is used to identify in which page frame that
page 00A1h of process C is stored. As you can see, the process knows
nothing about the outside world and cannot gain this knowledge, it
thinks it is the only process in the memory, and any memory address
it generates belongs to itself and it cannot interfere the translation
process or modify its own page table.

5.3 virtual memory

In multitasking system, beside the need of memory protection, also,
the main memory should be utilized as much as we can. In such
environment, multiple processes should reside in the main memory
and at some point of time the main memory will become full and the
kernel will not be able to create any new process before stopping a
currently running process to use its space in the main memory.

There are many situations where the current processes are occupy-
ing a space from the main memory but doesn’t really use this space,
that wastes this space since it can be used to load a process that really
needs this space. An example of these situations is when the process
is idle, that is, doing nothing but waiting for some external action
(e.g. a button click), in this case the only active code of this process
that should be in the main memory is the code that makes the process
waits for an event. Furthermore, modern software tend to be too large,
there are a lot of routines in a code of modern software that might
not be called at all during executing that software, loading the code of
those routines into the main memory wastes the occupied space, the
routines will be there in the memory, taking some space that can be
used for more useful purposes and they will never be called.

Virtual memory is a memory management technique that can be
used to utilize the main memory. You might noticed in modern
operating systems, you can open any number of software in a given
time and you never get a message from the operating system that tells
you that there is no enough space in the main memory although the
software that you are running need a large space of memory (modern
web browsers are obvious example), how can that be achieved? Well,
by using virtual memory which depends on paging that we have
discussed earlier.

Regarding to paging, we may ask ourselves an important question,
should all process’ pages be loaded into the memory? In fact, not
really. As we have said, the binary code of the software may have a
lot of routines that may not be called, so, the pages that contain these
routines should not be loaded into the memory since they will not be
used, instead, this space can be used for another pages that should
really be on the memory. To realize that, when the software is loaded
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for the first time, only the page the contains the entry code of the
software (e.g. main function in C) is loaded into the memory, not any
other page of that software. When some instruction in the entry code
tries to read data or call a routine that doesn’t exist on the loaded
page, then, the needed page will be loaded into the main memory
and that piece which was not there can be used after this loading, that
is, any page of the process will not be loaded into a free page frame
unless it’s really needed, otherwise, it will be waiting on the disk, this
is known as demand paging.

By employing demand paging, virtual memory saves a lot of mem-
ory space. Furthermore, virtual memory uses the disk for two things,
first, to store the pages that are no demanded yet, they should be there
so anytime one of them is needed, it can be loaded from the disk to
the main memory. Second, the disk is used to implement an operation
known as swapping.

Even with demand paging, at some point of time, the main memory
will become full, in this situation, when a page is needed to be loaded
the kernel that implements virtual memory should load it, even if the
memory is full! How? The answer is by using the swapping operation,
one of page frames should be chosen to be removed from the main
memory, this frame in this case is known as victim frame, the content
of this frame is written into the disk, it is being swapped out, and its
place in the main memory is used for the new page that should be
loaded. The swapped out page is not in the main memory anymore,
so, when it is needed again, it should be reloaded from the disk to the
main memory.

The problem of which victim frame should be chosen is known as
page replacement problem, that is, when there is no free page frame
and a new page should be loaded, which page frame should we make
free to be able to load the new page. Of course, there are many page
replacement algorithms out there, one of them is first-in first-out in
which the page frame that was the first one to be loaded among the
current page frames is chosen as a victim frame. Another well-known
algorithm is least recently used (LRU), in this algorithm, everytime the
page is accessed, the time of access is stored, when a victim frame is
needed, then it will be the oldest one that has been accessed.

The page table can be used to store a bunch of information that
are useful for virtual memory. First, a page table usually has a flag
known as present, by using this flag, the processor can tell if the page
that the process tries to access is loaded into the memory or not, if
it is loaded, then a normal access operation is performed, but when
the present flag indicates that this page is not in the memory, what
should be done? For sure, the page should be loaded from the disk to
the memory. Usually, the processor itself doesn’t perform this loading
operation, instead, it generates an exception known as page fault and
makes the kernel deal with it. A page fault tells the kernel that one



5.4 paging in x86 150

of the processes tried to access a not-loaded page, so it needs to be
loaded. As you can see, page faults help in implementing demand
paging, anytime a page needs to be loaded into the memory then a
page fault will be generated.

With this mechanism that virtual memory uses to manage the
memory, we can make a process to own a size of memory that is
not even available on the system. For example, in x86 architecture
with systems that employ virtual memory, each process thinks that
it owns 4GB of main memory, even if the system has only 2GB of
RAM for instance. This is possible due to demand paging and page
replacements. Of course, a large size of memory being available for
the process, makes it easier for the programmers to write their code.

5.4 paging in x86

In x86, unlike segmentation which is enabled by default, paging
is disabled by default, also, paging is not available on real mode, in
32-bit environment it can only be used in protected-mode 4. If paging
is intended to be used, the kernel should switch to protected-mode
first, then, enables paging through a special register in x86 known as
CR0 which is one of control registers of x86 architecture. The last bit of
CR0 is the one that decides if paging is enabled, when its value is 1, or
disabled when its value is 0.

There are three paging modes in x86 a kernelist can chooses from, the
difference between these three modes is basically related to the size
of memory addresses and the available sizes of a page. These modes
are 32-bit paging, PAE paging (PAE stands for “Physical Address Ex-
tension”) and 4-level paging which is available for 64-bit environment
only.

Beside the last bit in CR0, there are another two bits that can be
used to decide the current paging mode. The first one is known as
PAE bit which is the fifth bit of the control register CR4. When the
value of this bit is 1 that means PEA mode is enabled, while 0 means
otherwise. The second bit is known as LME in a register known as
IA32_EFER, setting the value of this register to 1 makes the processor
to switch from the protected-mode (32-bit environment) to the long-
mode (64-bit environment) and when the value of PAE bit is 1, then
4-level mode will be enabled.

In our next discussions, we are going to focus on 32-bit paging
mode which is the most basic one that is available for 32-bit environ-
ment. In this mode, there are two available sizes for a page 4KB and
4MB, also, 4GB of memory is addressable in this mode.

4 In 64-bit architecture paging is available in both protected-mode and long-mode.
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Figure 29: The Structure of Linear Address

5.4.1 The Structure of Linear Memory Address

Previously, we have discussed a part of the translation process of
memory addresses in x86. To sum what we have already discussed
up, any memory address that is generated by an executing code in
x86 is known as a logical address, which is not the real memory
address that contains the required data. This logical address need to
be translated to get the real address. The first step of this translation
process is to use segment descriptors to translate a logical address
to a linear address by using the mechanism that we have already
mentioned in chapter 2. When paging is disabled, the resulted linear
address will be the physical (real) address that can be sent to the main
memory to get the required data. On the other hand, when paging is
enabled, the linear address needs a further translation step to obtain
the physical memory address by using paging mechanism. To be able
to perform this step of translation, a page table is used with the parts
that compose the linear address.

Figure 29 shows the structure of a linear address and its parts. As
you can see, the size of a linear address is 32-bit which is divided
into three parts. The bits 22 to 31 represent a page directory entry, the
bits 12 to 21 represent a page table entry and the bits 0 to 11 represent
an offset that contains the required data within a page frame. For
example, assume a linear address which is composed of the following:
page directory entry x, page table entry y and offset z. That means
that this linear address needs to read the offset z from a page that is
represented by the entry y in the page table, and this page table is
represented by the page directory entry x.

As you can see here, unlike our previous discussion of page table,
the one which is implemented in x86 is a two-level page table, the
first level is known as page directory which is used to point to the
second level which is a page table and each page table, as we know,
points to a page frame. As we mentioned before, the reason of using
multi-level page tables is to save some memory since the size of page
tables tend to have relatively large sizes in modern architecture and
given that each process needs its own page table, then, its better to use
multi-level page table which allows us to load just the needed parts of
a page table (in a way similar to paging) instead of loading the whole
page table into the memory.
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Figure 30: The Structure of Page Directory Entry

5.4.2 Page Directory

The page directory in x86 can hold up to 1024 entries. Each entry
points to a page table and each one of those page tables can hold up
to 1024 entries which represent a process’s pages. In other words, we
can say that, for each process, there are more than one page table, and
each one of those page tables is loaded in a different part of the main
memory and the page directory of the process helps us in locating the
page tables of a process.

As we have mentioned before, the page directory is the first level
of x86’s page table and each process has its own page directory. How
the processor can find the current page directory, that is, the page
directory of the current process? This can be done by using the register
CR3 which stores the base physical memory address of the current
page directory. The first part of a linear address is an offset within the
page directory, when an addition operation is performed between the
first part of a linear address and the value on CR3 the result will be
the base memory address of the entry that represents a page table that
contains an entry which represents the page that contains the required
data.

The Structure of a Page Directory Entry

The size of an entry in the page directory is 4 bytes (32 bits) and its
structure is shown in the figure 30. The bits from 12 to 31 contain the
physical memory address of the page table that this entry represent.
Not all page tables that a page directory points to should be loaded
into the main memory, instead, only the needed page tables, the rest
are stored in a secondary storage until they are needed then they
should be loaded. To be able to implement this mechanism, we need
some place to store a flag that tells us whether the page table in
question is loaded into the main memory or not, and that’s exactly
the job of bit 0 of a page directory entry, this bit is known as present
bit, when its value is 1 that means the page table exists in the main
memory, while the value 0 means otherwise. When an executing code
tries to read a content from a page frame that its page table is not in
the memory, the processor generates a page fault that tells the kernel
to load this page table because it is needed right now.

When we have discussed segment descriptors, we have witnessed
some bits that aim to provide additional protection for a segment.
Paging in x86 also has bits that help in providing additional protection.
Bit 1 in a page directory entry decides whether the page table that
the entry points to is read-only when its value is 0 or if its writable
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1. Bit 2 decides whether the access to the page table that this entry
points to is restricted to privileged code, that is, the code that runs
on privilege level 0, 1 and 2 when the bit’s value is 0 or that the page
table is also accessible by a non-privileged code, that is, the code that
runs on privilege level 3.

Generally in computing, caching is a well-known technique. When
caching is employed in a system, some data are fetched from a source
and stored in a place which is faster to reach if compared to the source,
these stored data are known as cache. The goal of caching is to make a
frequently accessed data faster to obtain. Think of your web browser
as an example of caching, when use visit a page 5 in a website, the web
browser fetches the images of that page from the source (the server
of the website) and stores it in your own machine’s storage device
which is definitely too much faster to access if compared to a web
server, when you visit the same website later, and the web browser
encounters an image to be shown, it searches if it’s cached, if so, this
is known as cache hit, the image will be obtained from your storage
device instead of the web server, if the image is not cached, this is
known as cache miss, the image will be obtained from the web server
to be shown and cached.

The processor is not an exception, it also uses cache to make things
faster. As you may noticed, the entries of page directories and page
tables are frequently accessed, in the code of software a lot of memory
accesses happen and with each memory access both page directory
and pages tables need to be accessed. With this huge number of
accesses to page table and given the fact that the main memory is too
much slower than the processor, then some caching is needed, and
that exactly what is done in x86, a part of the page directory and page
tables are cached in an internal, small and fast memory inside the
processor known as translation lookaside buffer (TLB), each time an entry
of page table of directory is needed, this memory is checked first, if
the needed entry is on it, that is, we got a cache hit, then it will be
used.

In x86 paging, caching is controllable, say that for some reason, you
wish to disable caching for a given entry, that can be done with bit
4 in a page directory entry. When the value of this bit is 1, then the
page table that is represented by this entry will not be cached by the
processor, but the value 0 in this bit means otherwise.

Unlike web browsers, the cached version of page table can be written
to, for example, assume that page table x has been cached after using
it in the first time and there is a page in this page table, call it y, that
isn’t loaded into the memory. We decided to load the page y which
means present bit of the entry that represents this page should be
changed in the page table x. To make things faster, instead of writing
the changes to the page table x in the main memory (the source), these

5 Please do not confuse a web page with a process page in this example.
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changes will be written to the cache which makes a difference between
the cached data and the source data, that is, they are not identical
anymore. This inconsistency between the two places that store the
data should be resolved somehow, the obvious thing to do is to write
these changes later also on the source.

In caching context, the timing of writing the changes to the source
is known as write policy and there are two available policies in x86

for page tables and directory caches, the first one is known as write-
through, in this policy, the new data is written on both the cache and
the source at same time. The second policy is known as write-back,
in which the writing process is performed only on the cache, while
writing the changes on the source is performed later, for example
when we decide to clear the cache. Bit 3 of the page directory entry
decides which write policy will be used for the cached data, the value
1 means write-through policy will be used, while the value 0 means
write-back policy will be used.

As in segment descriptors, when a page table which is referred
by a given page directory entry is accessed, there is a bit in the
directory entry known as access bit which is the fifth bit in the entry.
The processor sets the value 1 automatically when the page table is
accessed. Setting the value to 0 for any reason is the responsibility of
the kernel.

We have said earlier that 32-bit paging in x86 provides us with two
possible options for the size of a page, either 4KB page or 4MB page.
The bit 7 in a page directory entry decides the size of the pages, when
its value is 0 then the page size will be 4KB while the value 1 means
that the page size is 4MB. There is a major difference between the two
options. When the size of the page is 4MB, the page table will be a
normal one-level page table, which means that the page directory will
not refer to a page table anymore, but it is going to refer to a page
frame. When the size of the page is 4KB, the two-level hierarchy will
be employed. That makes sense, the number of entries that are needed
to represent 4KB pages are way more than the number of entries that
are needed to represent 4MB pages. However, in our discussion, we
have focused (and will focus) on the case of 4KB pages. Finally, the
bits 6, 8, 9, 10 and11 in the page directory entry are ignored.

5.4.3 Page Table

In 4KB pages environment, a page table is referred to by an entry in the
page directory. As mentioned earlier, each page table can hold 1024

entries. After finding the base memory address of the page table in
question by consulting the page directory, this base memory address
will be used with the second part of the linear address to figure out
which page table entry should the processor consult to reach the
required data in the physical memory. Of course, the most important
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information that a page table entry stores is the base physical memory
address of the page frame, this memory address will be used with
the third part of the linear address (offset) to get the final physical
memory address.

The entry of a page table is exactly same as the entry of a page
directory, its size is 4 bytes. Though, there are some simple differences,
the first difference is bit 7, which was used to decide the page size
in page directory, is ignored in the entry of a page table. The second
difference is in bit 6, which was ignored in the entry of page directory,
in page tables this bit is known as dirty bit.

In our previous discussion on virtual memory we know that at
some point of time, a victim frame may be chosen. This frame is
removed from the main memory to free up some space for another
page that we need to load from the disk. When the victim frame is
removed from the main memory, its content should be written to the
disk since its content may have been changed while it was loaded into
the memory. Writing the content of the victim frame to the disk and
loading the new page also from disk, given that the disk is really too
slow compared to the processor, is going to cause some performance
penalty.

To make the matter a little bit better, we should write the content of
the victim frame only if there is a real change in its content compared
to the version which is already stored in the disk. If the victim frame
version which is on the main memory and the version on the disk are
identical, there is no need to waste valuable resource on writing the
same content on the disk, for example, page frames that contain only
code will most probably be the same all the time, so their versions
on disk and main memory will be identical. The dirty bit is used to
indicate whether the content of the page frame has been changed and
has differences with the disk version, that is, the page (when the value
of the bit 1) or the two versions are identical (value 0).

5.5 paging and dynamic memory in 539kernel

The last result of this section is version G of 539kernel which contains
the basic stuff that are related to the memory. Previously, we have seen
that we have no way in 539kernel to allocate memory dynamically,
due to that, the allocation of entries of processes table and the process
control block was a static allocation. Making dynamic allocation
possible is an important thing since a lot of kernel’s objects need to
be allocated dynamically. Therefore, the first memory-related thing to
implement is a way to allocate memory dynamically. The other major
part of version G is implementing paging by using x86 architecture’s
support. Since there is no way yet in 539kernel to access the hard
disk, virtual memory cannot be implemented yet. However, basic
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paging can be implemented and this can be used as basis for further
development.

5.5.1 Dynamic Memory Allocation

As we have mentioned earlier, in our normal process of develop-
ing applications by using programming languages that don’t employ
garbage collection, we are responsible for allocating spaces from mem-
ory. When we need to store data in memory, a free space in memory
should be available for this data to put this data in. The process of
telling that we need n bytes from memory to store some data is known
as memory allocation. There are two possible ways to allocate memory,
statically or dynamically.

Usually, a static memory allocation is used when we know the size
of data at compile time, that is, before running the application that
we are developing. Dynamic memory allocation is used when the
size of data will be known at run time. Static memory allocation is
the responsibility of the compiler of the language that we are using,
while the dynamic memory allocation is the responsibility of the
programmer 6, also, the regions that we have allocated dynamically
should be freed manually 7.

As we have seen, there are multiple region of a running process’s
memory and each region has a different purpose, we already discussed
run-time stack which is one of those region. The other data region
of a process that we also discussed previously is the run-time heap.
When we allocate memory dynamically, the memory region that we
have allocated is a part of the run-time heap, which is a large region of
process memory that is used for dynamic allocation, in C, for example,
the most well-known way to allocate bytes dynamically, that is, from
the run-time heap is to use the function malloc which implements an
algorithm known as memory allocator. The run-time heap need to be
managed, due to that, this kind of algorithms use data structures that
maintain information about the allocated space and free space.

A need of dynamic memory allocation have shown up previously in
539kernel. Therefore, in the current version 539kernel we are going to
implement the most basic memory allocator possible. Through a new
function kalloc (short for kernel allocate), which works in a similar way
as malloc, a bunch of bytes can be allocate from the kernel’s run-time
heap, the starting memory address of this allocated region will be
returned by the function, after that, the region can be used to store
whatever we wish. The stuff that are related to the kernel’s run-time

6 Not in all cases though.
7 This holds true in the case of programming languages like C. New system program-

ming languages such as Rust for example may have different ways to deal with the
matter. However, what we are discussing here is the basis, depending on this basis
more sophisticated concepts (e.g. Rust) can be built.
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heap will be defined in a new file heap.c and its header file heap.h,
let’s start with the latter which is the following.

1 unsigned int heap_base;

2

3 void heap_init();

4 int kalloc( int );

A global variable known as heap_base is defined, this variable
contains the memory address that the kernel’s run-time heap starts
from, and starting from this memory address we can allocate user’s
needed bytes through the function kalloc which its prototype is
presented here.

As usual, with each subsystem in 539kernel, there is an initialization
function that sets the proper values and does whatever needed to make
this subsystem ready to use, as you may recall, these functions are
called right after the kernel starts in protected mode, in our current
case heap_init is the initialization function of the kernel’s run-time
heap. We can now start with heap.c, of course, the header file heap.h

is needed to be included in heap.c, and we begin with the code of
heap_init.

1 #include "heap.h"

2

3 void heap_init()

4 {

5 heap_base = 0x100000;

6 }

As you can see, the function heap_init is too simple. It sets the
value 0x100000 to the global variable heap_base. That means that
kernel’s run-time heap starts from the memory address 0x100000. In
main.c we need to call this function in the beginning to make sure
that dynamic memory allocation is ready and usable by any other
subsystem, so, we first add #include "heap.h" in including section
of main.c, then we add the call line heap_init(); in the beginning of
kernel_main function. Next is the code of kalloc in heap.c.

1 int kalloc( int bytes )

2 {

3 unsigned int new_object_address = heap_base;

4

5 heap_base += bytes;

6

7 return new_object_address;

8 }

Believe it or not! This is a working memory allocator that can be
used for dynamic memory allocation. It’s too simple, though, it has
some disadvantages but in our case it is more than enough. It receives
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the number of bytes that the caller needs to allocate from the memory
through a parameter called bytes.

In the first step of kalloc, the value of heap_base is copied to a local
variable named new_object_address which represents the starting
memory address of newly allocated bytes, this value will be returned
to the caller so the latter can start to use the allocated memory region
starting from this memory address.

The second step of kalloc adds the number of allocated bytes to
heap_base, that means the next time kalloc is called, it starts with a
new heap_base that contains a memory address which is right after
the last byte of the memory region that has been allocated in the
previous call. For example, assume we called kalloc for the first time
with 4 as a parameter, that is, we need to allocate four bytes from
kernel’s run-time heap, the base memory address that will be returned
is 0x100000, and since we need to store four bytes, we are going to
store them on the memory address 0x100000, 0x100001, 0x100002 and
0x100003 respectively. Just before returning the base memory address,
kalloc added 4, which is the number of required bytes, to the base of
the heap heap_base which initially contained the value 0x100000, the
result is 0x100004 which will be stored in heap_base. Next time, when
kalloc is called, the base memory address of the allocated region will
be 0x100004 which is, obviously, right after 0x100003.

As you can see from the allocator’s code, there is no way to im-
plement free function, usually, this function takes a base memory
address of a region in run-time heap and tells the memory allocator
that the region which starts with this base address is free now and can
be used for other allocations. Freeing memory regions when the code
finishes from using them helps in ensuring that the run-time heap is
not filled too soon, when an application doesn’t free up the memory
regions that are not needed anymore, it causes a problem known as
memory leak.

In our current memory allocator, the function free cannot be imple-
mented because there is no way to know how many bytes to free up
given the base address of a memory region, returning to the previous
example, the region of run-time heap which starts with the base ad-
dress 0x100000 has the size of 4 bytes, if we want to tell the memory
allocator to free this region, it must know what is the size of this
region which is requested to be freed, that of course means that the
memory allocator needs to maintain a data structure that can be used
at least when the user needs to free a region up, one simple way to be
able to implement free in our current memory allocator is to modify
kalloc and make it uses, for example, a linked-list, whenever kalloc
is called to allocate a region, a new entry is created and inserted into
the linked-list, this entry can be stored right after the newly allocated
region and contains the base address of the region and its size, after
that, when the user request to free up a region by giving its base
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memory address, the free function can search in this linked-list until
it finds the entry of that region and put on the same entry that this
region is now free and can be used for future allocation, that is, the
memory which was allocated once and freed by using free function,
can be used later somehow.

Our current focus is not on implementing a full memory allocator,
so, it is up to you as a kernelist to decide how your kernel’s memory
allocator works, of course, there are a bunch of already exist algorithm
as we have mentioned earlier.

Using The Allocator with Process Control Block

To make sure that our memory allocator works fine, we can use it
when a new process control block is created. It also can be used for
processes table, as you may recall, the processes table from version
T is an array which is allocated statically and its size is 15, instead,
the memory allocator can be used to implement a linked-list to store
the list of processes. However, for the sake of simplicity, we will stick
here with creating PCB dynamically as an example of using kalloc,
while keeping the processes table for you to decide if it should be a
dynamic table or not and how to design it if you decide that it should
be dynamic.

The first thing we need to do in order to allocate PCBs dynamically
is to change the parameters list of the function process_create in both
process.h and process.c. As you may recall, in version T, the second
parameter of this function called process and it was the memory
address that we will store the PCB of the new process on it. We had
to do that since dynamic memory allocation wasn’t available, so, we
were creating local variables in the caller for each new PCB, then we
pass the memory address of the local variable to process_create to be
used for the new PCB. This second parameter is not needed anymore
since the region of the new PCB will be allocated dynamically by
kalloc and its memory address will be returned by the same function.
So, the prototype of the function process_create will be in process.h

and process.c respectively as the following.

1 process_t *process_create( int * );

1 process_t *process_create( int *base_address )

You can also notice that the function now returns a pointer to the
newly created PCB, in version T it was returning nothing. The next
changes will be in the code of process_create. The name of the
eliminated parameter of process_create was process and it was a
pointer to the type process_t. We substitute it with the following line
which should be in the beginning of process_create.

1 process_t *process = kalloc( sizeof( process_t ) );
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Simply, we used the same variable name process but instead of
getting it as a parameter we define it as a local variable, we call the
memory allocator to allocate a region that has the same size of the
type process_t from the kernel’s run-time heap, exactly as we do in
user-space applications development, so, the new memory region can
be used to store the new PCB and its memory address is stored in the
local variable process. In the last of process_create we should add
the line return process; to return the memory address for the newly
created PCB for the new process.

In version T we have called process_create in main.c to create
four processes, we need to change the calls by omitting the second
parameter, also the line process_t p1, p2, p3, p4; in main.c which
was allocating memory for the PCBs can be removed since we don’t
need them anymore. The calls of process_create will be as the
following.

1 process_create( &processA );

2 process_create( &processB );

3 process_create( &processC );

4 process_create( &processD );

5.5.2 Paging

In this section we are going to implement a basic paging for 539kernel.
To do that, a number of steps should be performed. A valid page
directory should be initialized and its address should be loaded in the
register CR3. Also, paging should be enabled by modifying the value
of CR0 to tell the processor to start using paging and translate linear
memory addresses by using the page tables instead of consider those
linear addresses as physical addresses. We have mentioned earlier, for
each process we should define a page table, however, in this section
we are going to define the page table of the kernel itself since this is
the minimum requirement to enable paging.

The page size in 539kernel will be 4KB, that means we need a page
directory that can point to any number of page tables up to 1024

page table. The mapping itself will be one-to-one mapping, that is, each
linear address will be translated to a physical address and both are
identical. For example, in one-to-one mapping the linear address
0xA000 refers to the physical address 0xA000. This choice has been
made to make things simple, more advanced designs can be used
instead. We already know the concept of page frame, when the page
size is 4KB that means page frame 0 is the memory region that starts
from the memory address 0 to 4095d. One-to-one mapping is possible,
we can simply define the first entry of the first page table 8 to point

8 The first page table is the one which is pointed to by the first entry in the page
directory.
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to page frame 0 and so on. The memory allocator will be used when
initializing the kernel’s page directory and page tables, we can allocate
them statically as we have done with GDT for example, but that can
increase the size of kernel’s binary file.

Before getting started with the details two new files are needed to
be created: paging.h and paging.c which will contain the stuff that
are related to paging. The content of paging.h is the following.

1 #define PDE_NUM 3

2 #define PTE_NUM 1024

3

4 extern void load_page_directory();

5 extern void enable_paging();

6

7 unsigned int *page_directory;

8

9 void paging_init();

10 int create_page_entry( int, char, char, char, char, char, char, char,

char );

The part PDE in the name of the macro PDE_NUM means page directory
entries, so this macro represents the number of the entries that will
be defined in the kernel’s page directory. Any page directory may
hold 1024 entries but in our case not all of these entries are needed
so only 3 will be defined instead, that means only three page tables
will be defined for the kernel. How many entries will be defined in
those page tables is decided by the macro PTE_NUM which PTE in its
name means page table entries, its value is 1024 which means there
will be 3 entries in the kernel’s page directory and each one of them
points to a page table which has 1024 entries. The total entries will
be 3 * 1024 = 3072 and we know that each of these entries map a
page frame of the size 4KB then 12MB of the physical memory will
be mapped in the page table that we are going to define, and since
our mapping will be one-to-one, that means the reachable physical
memory addresses start at 0 and ends at 12582912, any region beyond
this range, based on our setting, will not be reachable by the kernel
and it is going to cause a page fault exception. It is your choice to set
the value of PDE_NUM to the maximum (1024), this will make a 4GB of
memory addressable.

Getting back to the details of paging.h, both load_page_directory

and enable_paging are external functions that will be defined in
assembly and will be used in paging.c. The first function loads the
address of the kernel’s page directory in the register CR3, this address
can be found in the global variable page_directory but of course, its
value will be available after allocating the needed space by kalloc.
The second function is the one that modifies the register CR0 to enable
paging in x86, this should be called after finishing the initialization of
kernel’s page directory and loading it.
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Initializing Kernel’s Page Directory and Tables

From our previous encounter with the structure of page directo-
ry/table entry, we know that the size of this entry is 4 bytes and
has a specific arrangement of the bits to indicate the properties of
the entry being pointed to. The function create_page_entry helps
in constructing a value that can be stored in a page directory/table
entry based on the properties that should be enabled and disabled,
this value will be returned to the caller. As you can see from paging.h,
it returns an integer and that makes sense, as we know, the size of
integer in 32-bit architecture C is 4 bytes, exactly same as the size of
an entry. The following is the code of create_page_entry that should
be defined in paging.c, don’t forget to include paging.h inside it.

1 int create_page_entry( int base_address, char present, char writable,

char privilege_level, char cache_enabled, char

write_through_cache, char accessed, char page_size, char dirty )

2 {

3 int entry = 0;

4

5 entry |= present;

6 entry |= writable << 1;

7 entry |= privilege_level << 2;

8 entry |= write_through_cache << 3;

9 entry |= cache_enabled << 4;

10 entry |= accessed << 5;

11 entry |= dirty << 6;

12 entry |= page_size << 7;

13

14 return base_address | entry;

15 }

As you can see, each parameter of create_page_entry represents a
field in the entry of page directory/table, the possible values of all of
them but base_address are either 0 or 1, the meaning of each value
depends on the flag itself and we already have covered them. By using
bitwise operations we put each flag in its correct place.

The base address represents the base memory address of a page
table in case we are creating a page directory entry, while it represents
the base memory address of a page frame in case we are creating a
page table entry. This base address will be ORred with the value that
is generated to represent the properties of the entity that the current
entry is pointing to, we will discuss more details about the base
memory address when we start talking about page-aligned entries.

Now we can use create_page_entry to implement the function
paging_init which should reside in paging.c. This function will be
called when the kernel switches to protected-mode, as the usual with
initialization functions, its job is creating the kernel’s page directory
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and kernel’s page tables that implement one-to-one map based on the
sizes that defined in the macros PDE_NUM and PTE_NUM. The code of
paging_init is the following.

1 void paging_init()

2 {

3 // PART 1:

4

5 unsigned int curr_page_frame = 0;

6

7 page_directory = kalloc( 4 * 1024 );

8

9 for ( int currPDE = 0; currPDE < PDE_NUM; currPDE++ )

10 {

11 unsigned int *pagetable = kalloc( 4 * PTE_NUM );

12

13 for ( int currPTE = 0; currPTE < PTE_NUM; currPTE++,

curr_page_frame++ )

14 pagetable[ currPTE ] = create_page_entry( curr_page_frame *
4096, 1, 0, 0, 1, 1, 0, 0, 0 );

15

16 page_directory[ currPDE ] = create_page_entry( pagetable, 1, 0,

0, 1, 1, 0, 0, 0 );

17 }

18

19 // ... //

20

21 // PART 2

22

23 load_page_directory();

24 enable_paging();

25 }

For the sake of simpler discussion, I have divided the code of
the function into two parts and each part is indicated by a heading
comment. The job of the first part is to create the page directory and
the page tables. Based on the default values of PDE_NUM and PTE_NUM,
three entries will be defined in the page directory, each one of them
points to a page table that contains 1024 entries.

First, we allocate 4 * 1024 from the kernel’s heap for the page
directory, that’s because the size of each entry is 4 bytes, as you can
see, while we need only three entries for the page directory, we are
allocating memory for 1024 entries instead, the reason of that is the
following: the base memory address of a page table should be page-
aligned, also, the base memory address of a page frame should be
page-aligned. When the page size is 4KB, then a memory address
that we can describe as a page-aligned memory address is the one that
is a multiple of 4KB, that is, a multiple of 4096. In other words, it
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should be dividable by 4096 with no remainder. The first six multiples
of 4KB are 0 = 4096 * 0, 4096 = 4096 * 1, 8192 = 4096 * 2 (8KB),
12288 = 4096 * 3 (12KB), 16384 = 4096 * 4 (16KB), 20480 = 4096

* 5 (20KB) and so on. Each one of those value can be considered as a
page-aligned memory address when the page size is 4KB.

Let’s get back to the reason of allocating 4 * 1024 bytes for the page
directory instead of 4 * 3 bytes. We know that memory allocator sets
the base of the heap from the memory address 0x100000, also, we
know, based on the code order of the kernel that paging_init will be
the first code ever that calls kalloc, that is, kalloc will be called the
first time in 539kernel when we allocate a region for kernel’s page
directory in the line page_directory = kalloc( 4 * 1024 ); which
means that the memory address of kernel’s page directory will be
0x100000 (1048576d) which is a page-aligned memory address since
1048576 / 4096 = 256 (in hexadecimal: 0x100000 / 0x1000 = 0x100)
with no remainders.

When we allocate 4 * 1024 bytes for the page directory (the first
case), the next memory address that will be used by the memory
allocator for the next allocation will be 1048576 + ( 4 * 1024 )=

1052672 (0x101000) which is also a page-aligned memory address.
The second case is when we allocate 4 * 3 bytes for the page directory
instead, the next memory address that the memory allocator will
use for the next allocation will be 1048576 + ( 4 * 3 )= 1048588

(0x10000C) which is not a page-aligned memory address and cannot
be used as a base memory address for a page table.

If you continue reading the function paging_init you will see that
the next thing that will be allocated via kalloc after that page directory
is the first page table which should be in a page-aligned memory
address, due to that, we have used the first case which ensures that the
next call of kalloc is going to return a page-aligned memory address
instead of the second case which will not, of course, this is a quick
and dirty solution.

Getting back to the first part of paging_init, as you can see, it is
too simple, it allocates regions from the kernel’s heap for the page
directory and the entries of the three page tables. Then each entry in
both page table and page directory is being filled by using the function
create_page_entry. Let’s start with the line which defines entries in
a page table.

1 create_page_entry( curr_page_frame * 4096, 1, 0, 0, 1, 1, 0, 0, 0 )

Given that the size of a page is 4KB, then, page frame number 0

which is the first page frame starts at the physical memory address
0 and ends at physical memory address 4095, in the same way, page
frame 1 starts at the physical memory address 4096 and ends at the
physical memory address 8191 and so on. In general, with one-to-
one mapping, given n is the number of a page frame and the page
size is 4KB, then n * 4096 is the physical memory address that this
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page frame starts at. We use this equation in the first parameter that
we pass to create_page_entry when we create the entries that point
to the page frames, that is, page tables entries. The local variable
curr_page_frame denotes the current page frame that we are defining
an entry for, and this variable is increased by 1 with each new page
table entry. In this way we can ensure that the page tables that we are
defining use a one-to-one map.

As you can see from the rest of the parameters, for each entry in the
page table, we set that the page frame is present, its cache is enabled
and write-through policy is used. Also, the page frame belongs to
supervisor privilege level and the page size is 4KB.

The code which define a new entry in the page directory is similar
to the one which define an entry in a page table, the main difference
is, of course, the base address which should be the memory address of
the page table that belongs to the current entry of the page directory.
When we allocate a memory region for the current page table that
we are defining, its base memory address will be returned by kalloc

and stored in the local variable pagetable which is used as the first
parameter when we define an entry in the page directory.

the need of page-aligned memory addresses In the previ-
ous section we have discussed the meaning of a page-aligned memory
address, and we stated the fact that any base memory address that
is defined in a page directory/table entry should be a page-aligned
memory address. Why? You may ask.

Recalling the structure of page directory/table entry, it is known that
the number of bits that are dedicated for the base memory address are
20 bits (2.5 bytes or 2 bytes and a nibble), also, we know that in 32-bit

architecture, the size of the largest memory address (0xFFFFFFFF) is
of size 32 bits.

Now, assume that we want to define a page table entry that points
to the last possible page frame which its base address is 0xFFFFF000.
To store this full address 32 bits are needed 9 but only 20 bits are
available for base memory address in the page table entry, so, how
can we point to this page frame since we can’t store its full address in
the entry?

The numbers that we have defined previously as page-aligned
numbers, in other words, the multiples of 4096, have an interesting
property when they are represented in hexadecimal format, they
always end with three zeros! 10 In our current example of the last
possible page frame, we need to store 0xFFFFF000 as a base memory
address, you can see that it ends with three zeros which means that
this number is a page-aligned number. Removing the last three zeros

9 Remember, each hexadecimal digit represents a nibble. One byte consists of two
nibbles.

10 And that makes sense, the first one of them after zero is 0x1000 (4096d) and to get
the next one you need to add 0x1000 on the previous one and so on.
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of the example memory address gives us the value 0xFFFFF which
exactly needs 20 bits to be stored, so, due to that the base address the
is stored in page directory/table should be a page-aligned memory
address which makes it possible to remove the last three zeros from it
and make its size 20 bits and later on the processor will be able to get
the correct full base address from the 20bits in the entry, simply, by
appending three zeros to it. In create_page_entry the place of these
three zeros were used to store the properties of the entry when we
ORred the base address with the value that has been constructed to
represent the properties.

Loading Kernel’s Page Directory and Enabling Paging

The second part of the function paging_init performs two oper-
ations, the first one is loading the content of the global variable
page_directory in the register CR3, that is, loading the kernel’s page
directory so that the processor can use it when the second operation,
which enables the paging, is performed.

Because both of these functions need to access the registers directly,
they will be written in assembly in the file starter.asm. Till now, it
is the first time that we define a function in assembly and use it in C
code, to do that we need to add the following lines in the beginning
of starter.asm after extern run_next_process.

1 extern page_directory

2

3 global load_page_directory

4 global enable_paging

There is nothing new in the first line. We are telling NASM that
there is a symbol named page_directory that will be used in the
assembly code, but it isn’t defined in it, instead it’s defined in a
place that the linker is going to tell you about in the future. As you
know, page_directory is the global variable that we have defined in
paging.h and holds the memory address of the kernel’s page directory,
it will be used in the code of load_page_directory.

The last two lines are new, what we are telling NASM here is that
there will be two labels in current assemble code named load_page_directory

and enable_paging, both of them should be global, that is, they should
be reachable by places other than the current assembly code, in our
case, it’s the C code of the kernel. The following is the code of those
functions, they reside in starter.asm below the line bits 32 since
they are going to run in 32-bit environment.

1 load_page_directory:

2 mov eax, [page_directory]

3 mov cr3, eax

4

5 ret
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6

7 enable_paging:

8 mov eax, cr0

9 or eax, 80000000h

10 mov cr0, eax

11

12 ret

There is nothing new here. In the first function we load the content
of page_directory into the register CR3 and in the second function we
use bitwise operation to modify bit 31 in CR0 and sets its value to 1

which means enable paging. Finally, paging_init should be called by
kernel_main right after heap_init, the full list of calls in the proper
order is the following.

1 heap_init();

2 paging_init();

3 screen_init();

4 process_init();

5 scheduler_init();

5.5.3 Finishing up Version G

And now version G of 539kernel is ready. It contains a basic memory
allocator and a basic paging. The following is its Makefile which adds
the new files to the compilation list.

1 ASM = nasm

2 CC = gcc

3 BOOTSTRAP_FILE = bootstrap.asm

4 SIMPLE_KERNEL = simple_kernel.asm

5 INIT_KERNEL_FILES = starter.asm

6 KERNEL_FILES = main.c

7 KERNEL_FLAGS = -Wall -m32 -c -ffreestanding

-fno-asynchronous-unwind-tables -fno-pie

8 KERNEL_OBJECT = -o kernel.elf

9

10 build: $(BOOTSTRAP_FILE) $(KERNEL_FILE)

11 $(ASM) -f bin $(BOOTSTRAP_FILE) -o bootstrap.o

12 $(ASM) -f elf32 $(INIT_KERNEL_FILES) -o starter.o

13 $(CC) $(KERNEL_FLAGS) $(KERNEL_FILES) $(KERNEL_OBJECT)

14 $(CC) $(KERNEL_FLAGS) screen.c -o screen.elf

15 $(CC) $(KERNEL_FLAGS) process.c -o process.elf

16 $(CC) $(KERNEL_FLAGS) scheduler.c -o scheduler.elf

17 $(CC) $(KERNEL_FLAGS) heap.c -o heap.elf

18 $(CC) $(KERNEL_FLAGS) paging.c -o paging.elf

19 ld -melf_i386 -Tlinker.ld starter.o kernel.elf screen.elf

process.elf scheduler.elf heap.elf paging.elf -o 539kernel.elf
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20 objcopy -O binary 539kernel.elf 539kernel.bin

21 dd if=bootstrap.o of=kernel.img

22 dd seek=1 conv=sync if=539kernel.bin of=kernel.img bs=512 count=8

23 dd seek=9 conv=sync if=/dev/zero of=kernel.img bs=512 count=2046

24 qemu-system-x86_64 -s kernel.img



6
C H A P T E R 6 : F I L E S Y S T E M S

6.1 introduction

Given that both the processor and the main memory are resources
in the system, till this point, we have seen how a kernel of an oper-
ating system works as a resource manager, 539kernel manages these
resources 1 and provides them to the different processes in the system.

Another role of a kernel is to provide a way to communicate with
external devices, such as the keyboard and hard disk. Device drivers
are the way of realizing this role of the kernel. The details of the
external devices and how to communicate with them are low-level
and may be changed at any time. The goal of a device driver is to
communicate with a given device by using the device’s own language2

in behalf of any component of the system (e.g. a process) that would
like to use the device. Device drivers provide an interface so it can
be called by the other system’s components in order to tell the device
something to do, we can consider this interface as a library that we
use in normal software development. In this way, the low-level details
of the device is hidden from the other components and whenever
these details changed only the code of the device driver should be
changed, the interface can be kept to not affect its users. Also, hiding
the low-level details from driver’s user can ensure the simplicity of
using that driver.

The matter of hiding the low-level details with something higher-
level is too important and can be found, basically, everywhere in
computing and the kernels are not an exception of that. Of course,
there is virtually no limit of providing higher-level concepts based on
a previous lower-level concept, also, upon something that we consider
as a high-level concept we can build something even higher-level.
Beside the previous example of device drivers, one of obvious exam-
ples where the kernels fulfill the role of hiding the low-level details
and providing something higher-level, in other words, providing an
abstraction, is a filesystem which provides the well-known abstraction,
a file.

1 Incompletely of course, to keep 539kernel as simple as possible, only the basic parts
of resources management were presented.

2 The word language here is a metaphor, it doesn’t mean a programming language.

169
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In this chapter we are going to cover these two topics, device drivers
and filesystem by using 539kernel. As you may recall, it turned out
that accessing to the hard disk is an important aspect for virtual
memory, so, to be able to implement virtual memory, the kernel itself
needs to access the hard disk which makes it an important component
in the kernel, so, we are going to implement a device driver that
communicate with the hard disk in this chapter. After getting the
ability of reading from the hard disk or writing to it, we can explore
the idea of providing abstractions by the kernel through writing a
filesystem that uses the hard disk device driver and provides a higher-
level view of the hard disk that we all familiar with instead of the
physical view of the hard disk which has been described previously
in chapter 1. The final result of this chapter is version NE of 539kernel.

6.2 ata device driver

No need to say the hard disks are too common devices that are used
as secondary storage devices. There are a lot of manufacturers that
manufacture hard disks and sell them, imagine for a moment that
each hard disk from a different manufacturer use its own way for the
communication between the software and the hard disk, that is, the
method X should be used to be able to communicate with hard disks
from manufacturer A while the method Y should be used with hard
disks from manufacturer B and so on, given that there are too many
manufacturers, this will be a nightmare. Each hard disk will need
its own device driver which talks a different language from the other
hard disk device drivers.

Fortunately, this is not the case, at least for the hard disks, in these
situations, standards are here to the rescue. A manufacturer may
design the hard disk hardware in anyway, but when it comes to the
part of the communication between the hard disk and the outside
world, a standard can be used, so, any device driver that works with
this given standard will be able to communicate with this new hard
disk. There are many well-known standards that are related to the
hard disks, small computer system interface (SCSI) is one of them, another
one is advanced technology attachment (ATA), another well-known name
for ATA is Integrated Drive Electronics (IDE). The older ATA standard
is now known as Parallel ATA (PATA) while the newer version of
ATA is known as Serial ATA (SATA). Because ATA is more common
in personal computers we are going to focus on it here and write a
device driver for it, SCSI is more common in servers.

As in PIC which has been discussed in chapter 3, ATA hard disks
can be communicated with by using port-mapped I/O communication
through the instructions in and out. But before discussing the ATA
commands that let us to issue a read or write request to the hard
disk, let’s write two routines in assembly that can be used used as
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C functions in C code and perform the same functionality of the
instructions in and out.

If you don’t recall, the instruction out is used to write some bytes
on a given port number, so, if we know the port number that a device
(e.g. hard disk) receives commands from, we can use the instruction
out to write a valid command to that port. On the other hand, the
instruction in reads data from a given port, for example, sometimes
after we send a command to a device, it responds by writing something
on a specific port, the instruction in can be used to read this value.

The assembly code of the both routines that we are going to define
next should reside in starter.asm anywhere between bits 32 and
the beginning of start_kernel routine. The following is the code of
dev_write which can be used by C kernel code to write to a given
port. In C, we can see that it has this prototype: dev_write( int

port, int cmd ).

1 dev_write:

2 ; Part 1

3 push edx

4 push eax

5

6 ; Part 2

7 xor edx, edx

8 xor eax, eax

9

10 ; Part 3

11 mov dx, [esp + 12]

12 mov al, [esp + 16]

13

14 ; Part 4

15 out dx, al

16

17 ; Part 5

18 pop eax

19 pop edx

20

21 ret

The core part of this routine is part four which contains the in-
struction out that sends the value of AL to the port number which is
stored in DX. Because we are using these two registers 3, we push their
previous values into the stack and that’s performed in the first part
of the routine. Pushing the previous values of these registers lets us
restore them easily after the routine finishes its work, this restoration
is performed in the fifth part of the routine right before returning
from it, this is an important step to make sure that when the routine

3 Which are, as you know, parts of the registers EAX and EDX respectively.
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returns, the environment of the caller will be same as the one before
calling the routine.

After storing the previous values of EAX and EDX we can use them
freely, so, the first step after that is to clear their previous values
by setting the value 0 to the both of them, as you can see, we have
used xor and the both operands of it are the same register (hence,
value) that we wish to clear, this is a well-known way in assembly
programming to clear the value of a register 4. After that, we can move
the values that have been passed to the routine as parameters to the
correct registers to be used with out instruction, this is performed in
the third part of the routine 5.

Beside dev_write, we need to define another routine called dev_write_word

which is exactly same as dev_write but write a word (2 bytes) instead
of one byte to a port. The following is the code of this routine.

1 dev_write_word:

2 push edx

3 push eax

4

5 xor edx, edx

6 xor eax, eax

7

8 mov dx, [esp + 12]

9 mov ax, [esp + 16]

10

11 out dx, ax

12

13 pop eax

14 pop edx

15

16 ret

As you can see, the only difference between dev_write and dev_write_word

is that the first one uses the register al (8 bit) as the second operand
of out while the second one uses ax (16 bit) instead, so, a word can be
written to the port.

The following is the code of the routine dev_read which uses the
instruction in to read the data from a given port and returns them
to the caller, its prototype can be imagined as char dev_read( int

port ).

1 dev_read:

2 push edx

3

4 To my best knowledge its performance is better than the normal way of using mov.
5 You may notice that I’ve omitted the epilogue of routines that creates a new stack

frame, this decision has been made to make the matters simpler and shorter, you are
absolutely free to use the calling convention and most probably using it is a better
practice.
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4 xor edx, edx

5 xor eax, eax

6

7 mov dx, [esp + 8]

8

9 in ax, dx

10

11 pop edx

12

13 ret

For the same reason of restoring the previous environment when
returning to the caller, the routine pushes the value of edx into the
stack, then both of EDX and EAX are cleared since they will be used
by the instruction in. After that, the value of the passed parameter
which represents the port number that caller wishes to read from, is
stored in DX. Finally, in is called, the result is stored in AX, since the
first operand of in is AX and not AL then a word will be read from
the port and not a single byte. The decision of using AX instead of AL
was made here because of our needs as you will see later, if you need
to read just one byte for some reason you can define another routine
for that. Finally, the previous value of EDX is restored and the routine
returns.

You may ask, why did we only store and restore the previous
value of EDX and not EAX which was also used in the code of the
routine? The reason is that dev_read is a function that returns a value,
and according to the calling convention the returned value from a
function should be stored in the register in EAX, so, the value of EAX
is intended to be changed when return to the caller, therefore, it will
not be correct, logically, to restore the the previous value of WAX when
dev_read returns.

Because the ultimate goal of defining both dev_write and dev_read

is to make them available to be used in C code, so, the lines global

dev_write, global dev_write_word and global dev_read should be
written in the beginning of starter.asm after global enable_paging.

6.2.1 The Driver

One ATA bus in the computer’s motherboard makes it possible to
attach two hard disks into the system, one of them is called master
drive which is the main one that the computer boots from, the other
disk is known as slave drive. Usually, a computer comes with two
ATA buses instead of just one, which means up to four hard disks can
be attached into the computer. The first one of those buses is known
as the primary bus while the second one is known as the secondary
bus.
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Terms that combine a bus name with a device name are used to
specify exactly which device is being discussed, for example, pri-
mary master means the master hard disk that is connected to the
primary bus while secondary slave means the slave hard disk which
is connected to the secondary bus.

The port numbers that can be used to communicate with the devices
that are attached into the primary bus start from 0x1F0 and ends in
0x1F7 each one of these ports has its own functionality. The port
numbers from 0x170 to 0x177 are used to communicate with devices
that are attached into the secondary bus, so, there are eight ports for
each ATA bus.

For the sake of simplicity, our device driver is going to assume that
there is only a primary master and all read and write requests should
be sent to this primary master, therefore, our device driver uses the
port number 0x1F0 as the base port to send the commands via PIC.

You may ask, why are we calling this port number a base port? As
you know that all the following port numbers are valid to communicate
with the primary ATA bus: 0x1F0, 0x1F1, 0x1F2, 0x1F3, 0x1F4, 0x1F5,
0x1F6, 0x1F7, so, we can add any number from 0 through 7 to the base
port number of the primary bus 0x1F0 to get a correct port number,
the same holds true with the secondary ATA bus which its base port
number is 0x170. So, we can define the base port as a macro (or
even variable) as we will see in our device driver, then we can use
this macro by adding a specific value to it from 0 through 7 to get a
specific port, the advantage of doing so is the easiness of changing the
value of the base port to another port without the need of changing
the code itself.

Before starting in the implementation of the driver, let’s create two
new files: ata.h and ata.c which will contain the code of the ATA
device driver which provides an interface for the rest of the kernel
to write to and read from the disk. The following is the content of
ata.h and the details of the functions will be discussed in the next
subsections.

1 #define BASE_PORT 0x1F0

2 #define SECTOR_SIZE 512

3

4 void wait_drive_until_ready();

5

6 void *read_disk( int );

7 void write_disk( int, short * );

8

9 void *read_disk_chs( int );

10 void write_disk_chs( int, short * );
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Addressing Mode

As in the main memory, the hard disks use addresses to read the data
that are stored in a specific area of the disk, the same is applicable in
write operation, the same address can be used to write on the same
specific area. There are two schemes of hard disk addresses, the older
one is known as cylinder-head-sector addressing (CHS) while the newer
one which more dominant now is known as logical block addressing
(LBA).

In chapter 1 we have covered the physical structure of hard disks
and we know from that discussion that the data are stored in small
blocks known as sectors, also, there are tracks which each one of them
consists of a number of sectors, and finally, there are heads that should
be positioned on a specific sector to read from it or to write to it. The
scheme CHS uses the same concepts of physical structure of hard disk,
the address of a given sector on the hard disk should be composed by
combining three numbers together, the cylinder (track) that this sector
reside on, the sector that we would like to access and the head that is
able to access this sector. However, this scheme is obsolete now and
LBA is used instead of it.

In LBA, a logical view of a hard disk is used instead of the physical
view. This logical view states that the hard disk is composed of a
number of logical blocks with a fixed size, say, n bytes. These blocks
are contagious in a similar way of the main memory and to reach any
block you can use its own address, the addresses start from 0, the
block right after the first one has the address 1 and so on. As you can
see, addressing in LBA is more like the addressing of the main memory,
the main difference here is that in current computers each address of
the main memory points to a byte in memory while an address in LBA

points to a block which can be a sector (512 bytes) or even bigger.

Reading from Disk

In this subsection we are going to implement both read_disk_chs

and read_disk which send commands to an ATA hard disk via the
available ports in order to read a sector/block from the disk. The
first one of those functions uses CHS scheme while the second one
uses LBA scheme. In the next discussions, I’m going to use the symbol
base_port to indicate the base port of one of ATA ports, in our case,
the base port is 0x1F0 since we are going to use the primary bus in
our device driver, but what we are discussing is applicable to any ATA
bus with any base port number.

To issue a read command the value 0x20 should be sent to base_port

+ 7, but before doing that, a number of values should be set in the
other ports in order to specify the address that we would like to read
from. These ports are the following: In base_port + 2 the number of
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sectors/blocks that we would like to read in this operation should be
set.

The value that should be written to base_port + 6 specifies more
than one thing, bit 6 of this value specifies whether we are using CHS

or LBA in the current read request, when the bit’s value is 0 then CHS is
being used while the value 1 means that LBA is being used. The bits 5

and 7 of this value should always be 1. The bit 4 is used to specify the
drive that we would like to read from, the value 0 for the master drive
while 1 for the slave drive. In the case that we are using CHS, then the
first four bits (0 to 3) of this value is used to specify the head while
in the case that we are using LBA, these bits store a part from the LBA

address, this part starts from bit 24 to bit 27.
When the current addressing mode is CHS, the sector number that

we would like our read operation to start from should be sent to
base_port + 3, the low part of the cylinder number should be sent
to base_port + 4 and the high part of the cylinder number should be
sent to base_port + 5. The following table summarizes the parame-
ters to the read command when the addressing mode is CHS.

Port Number Purpose (in CHS)

base_port + 2 Number of Sectors to Read
base_port + 3 The Sector Number to Read From
base_port + 4 Lower Part of the Cylinder Number
base_port + 5 Higher Part of the Cylinder Number
base_port + 7 Command Port. Read Command: 0x20

Port Number Bit(s) Purpose (in CHS)

base_port + 6 0-3 The Head
4 Drive to Use (0 = Master, 1 = Slave)
5 Always 1

6 Addressing Mode (0 for CHS)
7 Always 1

Once the read command is issued with the right parameters passed
to the correct ports, we can read the value of base_port + 7 to check
if the disk finished the reading operating or not by reading the eighth
bit (bit 7) of that value, when the value of this bit is 1 that means
the drive is busy, once it becomes 0 that means that the operation
completed.

When the reading operation is completed successfully, the data are
brought to base_port which means we need to read from it and put
the required data in the main memory. The following is the code of
read_disk_chs that should reside in ata.c. Don’t forget to include
ata.h when you create ata.c.
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1 void *read_disk_chs( int sector )

2 {

3 // Part 1

4

5 dev_write( BASE_PORT + 6, 0x0a0 );

6 dev_write( BASE_PORT + 2, 1 );

7 dev_write( BASE_PORT + 3, sector );

8 dev_write( BASE_PORT + 4, 0 );

9 dev_write( BASE_PORT + 5, 0 );

10 dev_write( BASE_PORT + 7, 0x20 );

11

12 // ... //

13

14 // Part 2

15 wait_drive_until_ready();

16

17 // ... //

18

19 // Part 3

20

21 short *buffer = kalloc( SECTOR_SIZE );

22

23 for ( int currByte = 0; currByte < ( SECTOR_SIZE / 2 ); currByte++ )

24 buffer[ currByte ] = dev_read( BASE_PORT );

25

26 return buffer;

27 }

In the first part of read_disk_chs we send the required values
to the appropriate ports as we have described above. In the port
base_port + 6 we set that the drive is 0 and the head is 0, also, we
set that the addressing mode that we are currently using is CHS. In
port base + 2 we set that we would like to read one sector, that is, the
function read_disk_chs reads 512 bytes from disk with each call. In
port base_port + 3 we set the sector number that we would like to
read, as you can see, this number is passed through the parameter
sector, so, the caller can specify the sector that it would like to read.
In both base_port + 4 and base_port + 5 we specify the cylinder
that we would like to read from, which is cylinder 0. Finally, we issue
a read request to the ATA bus by writing 0x20 to base_port + 7. For
the sake of simplicity, we have used fixed values for a number of
parameters here, in real situations, those fixed values should be more
flexible. However, using LBA will provide us more flexibility with the
simplicity that we are interested on.

The second part of read_disk_chs calls the function wait_drive_until_ready

which makes sure that the code after calling it, will not be executed



6.2 ata device driver 178

until the device finishes its work. The following is the code of this
function.

1 void wait_drive_until_ready()

2 {

3 int status = 0;

4

5 do

6 {

7 status = dev_read( BASE_PORT + 7 );

8 } while ( ( status ^ 0x80 ) == 128 );

9 }

The function wait_drive_until_ready reads the value of the port
base_port + 7 which is going to contain the status of the drive. As we
mentioned earlier, the eighth bit (bit 7) of this value indicates whether
the drive is busy or not, with each iteration of the loop, the function
reads this value and checks whether the value of the eighth bit is 1 by
using bitwise operations, if this is the case, that means the drive is still
busy in completing the requested operation (reading operation in our
current case), so, we need to wait for it until it finishes and we spend
this time of waiting in reading the value of the port and check the
eighth bits over and over again until the drive finishes, this technique
of checking the device’s status over and over again until it finishes an
operation is known as busy waiting.

When the read operation finishes, we can read the target content
word by word 6 from the base port and that’s the job of the third part
of read_disk_chs which reads a word each time and stores it in a
buffer that we dynamically allocate from the kernel’s heap.

We have used the type short for the variable buffer because the
size of this type in 32-bit architecture is 2 bytes, that is, a word. In
the condition of the for loop we used currByte < ( SECTOR_SIZE

/ 2 ) instead of currByte < SECTOR_SIZE due to the fact that we are
reading two bytes in each iteration instead of one byte. Finally, the
memory address which buffer points to, is going to contain the sector
that we have just read from the disk, this memory address will be
returned to the caller.

Now, we can turn to the other read function read_disk which uses
LBA scheme instead of CHS. In fact, this new function will be almost
similar to read_disk_chs, the main differences will be with some
values that we are passing to the ports of ATA bus. In LBA scheme,
base_port + 6 should be changed to indicate that the scheme that we
are using is LBA and we can do that as we mentioned before by setting
the value 1 to bit 6. The other difference in this port value is that the
bits 0 to 3 should contain the bits 24 to 27 of the logical block address

6 The fact that we need to read a word here instead of a byte is the reason of using
the register AX instead of AL as the first operand for in instruction in the function
dev_read.
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that we would like to read from, the other parts of the addresses are
divided to the following ports: base_port + 3 contains bits 0 to 7

of that address, base_port + 4 contains bits 8 to 15, base_port + 5

contains bits 16 to 23. Both ports base_port + 2 and base_port + 7

stay the same. The following table summarizes the parameters of read
command when LBA is used.

Port Number Purpose (in LBA)

base_port + 2 Number of Blocks to Read
base_port + 3 Bits 0-7 from the Logical Block Address
base_port + 4 Bits 8-15 from the Logical Block Address
base_port + 5 Bits 16-23 from the Logical Block Address
base_port + 7 Command Port. Read Command: 0x20

Port Number Bit(s) Purpose (in CHS)

base_port + 6 0-3 Bits 24-27 from the Logical Block Address
4 Drive to Use (0 = Master, 1 = Slave)
5 Always 1

6 Addressing Mode (1 for LBA)
7 Always 1

The function read_disk receives a parameter named address in-
stead of sector, that is, the logical block address that the caller would
like to read the data from, by using bitwise operations the value of
this parameter can be divided into the described parts to be filled
in the appropriate ports. The rest of read_disk is exactly same as
read_disk_chs. To not get a lot of space from the book, the follow-
ing is the beginning of the new function and the only part that has
differences with read_disk_chs.

1 void *read_disk( int address )

2 {

3 dev_write( BASE_PORT + 6, ( 0x0e0 | ( ( address & 0x0F000000 ) >>

24 ) ) );

4 dev_write( BASE_PORT + 2, 1 );

5 dev_write( BASE_PORT + 3, address & 0x000000FF );

6 dev_write( BASE_PORT + 4, ( address & 0x0000FF00 ) >> 8 );

7 dev_write( BASE_PORT + 5, ( address & 0x00FF0000 ) >> 16 );

8 dev_write( BASE_PORT + 7, 0x20 );

Writing to Disk

In both CHS and LBA, write operation is called via ports exactly in
the same way of reading, though, there are two differences. First,
the command number to issue a write request is 0x30 which should
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be written to base_port + 7 after setting the correct values to the
ports. Second, after the drive becomes ready to write the required
data, we should write a word after the other to base_port until we
finish, this is performed by calling the routine dev_write_word which
uses the instruction out to perform that job. Need no more discussion,
the following two functions are write_disk_chs which uses CHS to
write to the disk, and write_disk which uses LBA to write to the disk.
Both of them receive a parameter called buffer which is a pointer
to the data that we would like to write to the disk. You can see
wait_drive_until_ready is called twice, the first one after setting the
correct parameters and issuing write command, the second one after
requesting to write the words of the buffer into the disk in order
to make sure that the write function doesn’t return before the disk
finishes the write operation.

1 void write_disk_chs( int sector, short *buffer )

2 {

3 dev_write( BASE_PORT + 6, 0x0a0 );

4 dev_write( BASE_PORT + 2, 1 );

5 dev_write( BASE_PORT + 3, sector );

6 dev_write( BASE_PORT + 4, 0 );

7 dev_write( BASE_PORT + 5, 0 );

8 dev_write( BASE_PORT + 7, 0x30 );

9

10 wait_drive_until_ready();

11

12 for ( int currByte = 0; currByte < ( SECTOR_SIZE / 2 ); currByte++ )

13 dev_write_word( BASE_PORT, buffer[ currByte ] );

14

15 wait_drive_until_ready();

16 }

17

18 void write_disk( int address, short *buffer )

19 {

20 dev_write( BASE_PORT + 6, ( 0x0e0 | ( ( address & 0x0F000000 ) >>

24 ) ) );

21 dev_write( BASE_PORT + 2, 1 );

22 dev_write( BASE_PORT + 3, address & 0x000000FF );

23 dev_write( BASE_PORT + 4, ( address & 0x0000FF00 ) >> 8 );

24 dev_write( BASE_PORT + 5, ( address & 0x00FF0000 ) >> 16 );

25 dev_write( BASE_PORT + 7, 0x30 );

26

27 wait_drive_until_ready();

28

29 for ( int currByte = 0; currByte < ( SECTOR_SIZE / 2 ); currByte++ )

30 dev_write_word( BASE_PORT, buffer[ currByte ] );

31
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32 wait_drive_until_ready();

33 }

6.3 filesystem

Until now, we have seen multiple examples of presenting a logical
higher-level view of something that is low-level, another example of
that is a filesystem. A filesystem is a higher-level view of a storage
device, this higher-level view makes it easier for the human user (and
also the code) to use storage devices. Take hard disks as an example
and imagine that we use them based on their low-level view that we
have discussed in this chapter, it will be really too hard for us humans
to remember what is the logical block address of some data that we
need to fetch right now, also, it will be really harder to remember
which blocks of the hard disk are free and which of them are not in
order to store new data. As an alternative, we can build a logical view
based on this low-level method of hard disk’s functionality to make it
easier for the human user to use the hard disk and hide the low-level’s
complicated details of hard disks.

Filesystems provide a well-known abstraction called file which is a
sequence of bytes that has a name and is reachable by using this name.
By providing this abstraction, it will be really easy for the human or
even the applications to use the hard disk to store and retrieve data.
Beside file abstraction, a filesystem may provide more features, for
example, directories (or folders) are usually provided by filesystems
in order to let the user to organize her files in a hierarchical way.

To be able to implement the file abstraction we need a way to
maintain the list of current files stored in the system and their locations
in the disk, due to that, specific filesystems usually use some sort of
data structures to maintain the information about the files in a given
system, that is, the files’ metadata 7. This data structure is stored in
the disk for the future use and it is interpretable by the kernel that
implements that filesystem, by loading this data structure from the
disk and interpreting it correctly, you can reach the files and their
organization as the user of the system created them.

The meaning of the term filesystem may differ based on the context.
The first meaning of this term which we meant above is a subsystem
(component) of an operating system that works based on a specific
design to manage the files and directories of a system’s user. The other
meaning that you may encounter more often in system administration
context is the list of all files and directories that the users created in
a specific system. In our next discussions I’m going to use the term
filesystem to mean the first definition, while I’ll use run-time filesystem

7 The term metadata means data about data
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to mean the second definition. Also, when the term address is used in
the next discussions, it means a logical block address.

As in programming languages, a filesystem may be divided into two
parts: A design and an implementation. The design of a filesystem
tells us how this filesystem stores the information about the run-time
filesystem, how the metadata are organized, which data structure is
used to fulfill the goal of the filesystem an so on 8. Of course, the
design can be there, written on the papers as a brilliant theoretical
piece of work but to realize this design, an implementation should be
written that uses it 9. For example, a well-known filesystem is FAT
(short for: file allocation table) which is an old filesystem that started
on 1977 and still in use nowadays. Because its design is available,
anyone can write an implementation of it and make her kernel able to
read run-time filesystems that have been created by another operating
system that uses FAT, Linux kernel is an example of the kernels that
have a FAT implementation. As an example of filesystem, we are
going to design and implement 539filesystem in this section.

6.3.1 The Design of 539filesystem

To make the implementation of 539filesystem as simple as possible,
many restrictions is presented in its design. First, there is only one
directory in the run-time filesystem that uses 539filesystem which is
the root directory, all the files that are created by the user are stored
in this directory and there is no way to create new directories. Second,
the maximum size of a file is 512 bytes and finally, when a file is
created there is no way to modify it, its content is written when it’s
created and that’s it! I know, you may think that these are too harsh
restrictions, I agree, but these restrictions help in providing a too
simple and elegant implementation of a real filesystem that can be
extended easily to get rid of these restrictions.

The data structure that will be used to maintain the metadata of the
run-time filesystem is linked-list which is a simple data structure that
is known for its slow search operation but fast insert operation, its
simplicity is the reason of choosing it for 539filesystem, real modern
filesystems use more complex data structures to make the performance
of the filesystem better.

In 539filesystem, the block that has the address 100 in the disk is
known as the base block, from this block we can reach the whole run-
time filesystem. The base block is divided into two parts, the size of
each one of them is 4 bytes, the first part is the address of the metadata
of the first file that has been created in the run-time filesystem, that is,
the head file 10 while the second part is the address of the metadata of

8 The design part of programming languages is the language specifications.
9 The implementation part of programming languages is a compiler or interpreter.

10 In linked-list data structure’s term: the head
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Figure 31: An Overview of 539filesystem Design

the last file that has been created in the run-time filesystem, that is,
the tail file 11.

Each file has its own metadata that contains file’s name and the next
field which stores the metadata address of the next file that has been
created. The length of the filename is 256 bytes and the size of “next”
field is 4 bytes. When there is no next file, the value 0 is stored in the
“next” field of the last file’s metadata, that is, the tail file.

It should be obvious now how can we reach all files in a run-time
filesystem that uses 539filesystem, starting from the base block we get
the metadata address of the head file and by using the “next” field
from this metadata we can reach the metadata of the next file and the
process continues until we reach the tail file.

The metadata of each file is stored in the block right before the
content of the file which will be stored in one block only given that
the size of a block is 512 bytes 12. For example, if the metadata of file
A is stored in the address 103, then the content of this file is stored
in the address 104. By using this design, the basic functionalities
of filesystems can be provided. Figure 31 shows an overview of
539filesystem design where four files stored in the system, x, y, z and
w.

11 In linked-list data structure’s term: the tail
12 In real-world situation, giving a whole block for a metadata of 260 bytes can be

considered as a waste of space. One of real filesystems goals is to use as little space
as possible to maintain the structure of the run-time filesystem.
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6.3.2 The Implementation of 539filesystem

Before getting started in implementing the proposed design in the
previous section, let’s define two new files: str.h and str.c which
contain string related function that can be useful when we write our
filesystem. Two functions will be implemented in str.c and they are
strcpy which copies a string from a location to another, and strcmp

which compares two strings, if they are equals then 1 is returned,
otherwise 0 is returned. There is no need to explain the details of
the code of these two functions since they depend on the normal way
which C uses with strings. The following is the content of str.h.

1 void strcpy( char *, char * );

2 int strcmp( char *, char * );

The following is the content of str.c.

1 #include "str.h"

2

3 void strcpy( char *dest, char *src )

4 {

5 int idx = 0;

6

7 while ( *src != ’\0’ )

8 {

9 dest[ idx ] = *src;

10

11 src++;

12 idx++;

13 }

14 }

15

16 int strcmp( char *str1, char *str2 )

17 {

18 while ( *str1 != ’\0’ )

19 {

20 if ( *str1 != *str2 )

21 return 0;

22

23 str1++;

24 str2++;

25 }

26

27 if ( *str2 != ’\0’ )

28 return 0;

29

30 return 1;

31 }
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Now we can start implementing 539filesystem. The first step as
usual is to create the files that hold the functions related to our filesys-
tem: filesystem.h and filesystem.c. The following is the content of
filesystem.h.

1 #define BASE_BLOCK_ADDRESS 100

2 #define FILENAME_LENGTH 256

3

4 typedef struct

5 {

6 int head, tail;

7 } base_block_t;

8

9 typedef struct

10 {

11 char filename[ FILENAME_LENGTH ];

12 int next_file_address;

13 } metadata_t;

14

15 base_block_t *base_block;

16

17 void filesystem_init();

18 void create_file( char *, char * );

19 char **list_files();

20 char *read_file( char * );

21

22 // Auxiliary Functions

23 metadata_t *load_metadata( int );

24 int get_address_by_filename( char * );

25 int get_prev_file_address( int );

26 int get_files_number();

First we define two macros, BASE_BLOCK_ADDRESS and FILENAME_LENGTH.
The first one is the address of base block in the disk, as we have men-
tioned earlier, this address is 100. The second one is the maximum
length of a filename in 539filesystem, and we mentioned earlier that
this length is 256.

Then we define two structures as types: base_block_t and metadata_t,
based on our discussions on 539filesystem design, you may have no-
ticed that base_block_t represents the base block, it has two fields,
each one of them of size 4 bytes, the first one is head and the second
one is tail. The type metadata_t represents the metadata of a file,
it has two fields as we described before, the first one is the filename
and the second one is the metadata address of the next file. These
two structures are based on linked-list data structure, and we are
going to use them to load the data that they represent from the disk,
manipulate them while they are in the main memory, then write them
back to the disk in order to make the run-time filesystem persistent.
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Then the global variable base_block is defined, which is the mem-
ory address that contains the base block after loading it from the
disk, as we have said, this loaded copy is the one that we are going
to update when the user performs a transactional operation on the
run-time filesystem such as creating a new file for example.

After including filesystem.h in filesystem.c the first function
that we are going to implement is filesystem_init which is an ini-
tializer that will be called once the kernel starts. Its code is too simple,
it is going to use the ATA device driver to read the base block from
the disk to the main memory and stores the memory address of this
loaded data in the global variable base_block.

1 void filesystem_init()

2 {

3 base_block = read_disk( BASE_BLOCK_ADDRESS );

4 }

We need to include filesystem.h in main.c and call function filesystem_init

by putting the line filesystem_init(); in kernel_main of main.c af-
ter the line scheduler_init();. The rest of functions will be discussed
in the following sub-sections.

Creating a New File

Let’s begin with the function create_file, we mentioned before that
there is no write operation in 539filesystem, instead, the content of
a new file is written in the same operation that creates a new file.
Basically, create_file operation should decide the disk address that
the new file and its metadata should be stored in, of course, in real-
world situation, the filesystem should be sure that this disk address is
free and doesn’t contain a part of another file. After deciding the disk
address of this new file, the metadata of the file should be stored in
the block that this address points to, and in the next block the content
of this file should be stored. The metadata of the new file can be
initialized by using the type metadata_t and after that it can be stored
into the disk by using ATA device driver.

Beside writing the metadata and the content of the file on the disk,
creating a new file in 539filesystem is equivalent to inserting a new
item in a linked-list, so, the base block need to be modified to make
sure that the new file is reachable later. To do that, the metadata
address of the new file should replace the tail in the base block, that is,
the metadata address that was the tail before creating the new file is
not the tail anymore, it become a normal item in the list that was once
the tail and it can be reached via the “next” field of the file before it.
The “next” field of this previous tail should be updated to point to
the newly created file, and the tail in base block should be updated in
the base block to point to the newly created file. There are also more
subtle cases in updating the base block that will be discussed while
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Figure 32: The State 539filesystem After Creating the First File

writing the code of create_file. Let’s start with the first part of the
function.

1 void create_file( char *filename, char *buffer )

2 {

3 int metadata_lba = ( base_block->head == 0 ) ? BASE_BLOCK_ADDRESS +

1 : base_block->tail + 2;

4 int file_lba = metadata_lba + 1;

5

6 metadata_t *metadata = kalloc( sizeof( metadata_t ) );

7

8 metadata->next_file_address = 0;

9

10 int currIdx;

11

12 for ( currIdx = 0; *filename != ’\0’ && currIdx < FILENAME_LENGTH -

1; currIdx++, filename++ )

13 metadata->filename[ currIdx ] = *filename;

14

15 metadata->filename[ currIdx ] = ’\0’;

16

17 write_disk( metadata_lba, metadata );

18 write_disk( file_lba, buffer );

When the value of the head in the base block is 0, that means there
is no files at all in the run-time filesystem. When create_file is called
in this situation, that means this file that the caller is requesting to
create is the first file in the run-time filesystem, the metadata of this
first file can be simply stored in the block right after the base block.
In create_file this fact is used to decide the disk address for the
metadata of the new file, this address is stored in the local variable
metadata_lba which its name is a short for “metadata logical block
address”. Figure 32 shows the state of 539filesystem after creating the
first file A in the run-time filesystem.

In case that the run-time filesystem is not empty, that is, the value
of head is not 0, then the tail field of base block can be used to decide
the metadata address of the new file. As we know, the tail field
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contains the metadata address of the last file that has been added to
the run-time filesystem, and the content of that file is stored in the
disk address tail + 1, which means tail + 2 is a free block that can
be used to store new data 13, so we choose this address for the new
metadata in this case. After that, the disk address of the new content is
decided by simply adding 1 to the disk address of the new metadata,
the address of the content is stored in the local variable file_lba.

After deciding the disk addresses of the new metadata and file con-
tent, we start in creating the metadata of the file to store them later on
the disk. As you can see in the code, we allocate a space in the kernel’s
heap for the new metadata by depending on the type metadata_t,
after this allocation, we can use the local variable metadata to fill the
fields of the new file metadata. First, we set the value of the “next”
field to 0, because, as we mentioned earlier, this new file will be the tail
file which means there is no file after it. Then, we copy the filename
which is passed as a parameter filename to the filename field of the
metadata, in case the passed filename’s length is less than the maxi-
mum length, then the whole filename is copied, otherwise, only the
maximum number of characters of the passed filename is copied and
the rest are simply ignored. The final step that is related to the new
file is to write the metadata and the file content in the right addresses
on the disk, and this is done in the last two lines which use the ATA
device driver. The following is the next and last part of create_file
which updates the base block depending on the current state of the
run-time filesystem.

1 if ( base_block->head == 0 )

2 {

3 update_base_block( metadata_lba, metadata_lba );

4 }

5 else

6 {

7 metadata_t *tail_metadata = load_metadata( base_block->tail );

8

9 tail_metadata->next_file_address = metadata_lba;

10

11 write_disk( base_block->tail, tail_metadata );

12 update_base_block( base_block->head, metadata_lba );

13 }

14 } // End of "create_file"

When the run-time filesystem is empty, that is, the value of head in
the base block is 0, then the new file that we are creating will be both
the head and the tail file. As you can see, in the block of if statement
that checks whether head equals 0 or not, the not defined yet function

13 This is ensured since 539filesystem stores the files in order, so, there will be no files
after the tail unless it is a deleted file which can be overwritten and causes no data
lose.
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update_base_block is used, this function updates the values of head
and tail of the base block and write these changes on the permanent
copy of the base block on the disk, the disk address of the new file’s
metadata is simply set as head and tail when update_base_block is
called in this case.

The second case is when the run-time filesystem isn’t empty, that
is, the value of head isn’t 0. In this case we need to update the disk
address of the tail in the base block to consider the new file as the new
tail, furthermore, the “next” field of the previous tail, which is not the
tail anymore, should be updated to point to the metadata of the new
file, you see in else block that this is exactly what is done.

The function that isn’t defined yet load_metadata is used to load
the metadata of the previous tail by passing the its disk address a pa-
rameter. After that, the local variable tail_metadata will point to that
loaded metadata of the tail, and depending on the type metadata_t

we can reach the values of the previous tail fields easily. You can
see that we simply changed the value of the “next” field to the meta-
data address of the new file, then we write this modification on the
disk and of course on the same location, finally, the tail field is up-
dated in the base block by calling update_base_block which its code
is presented next. Figure 33 shows the steps needed to create a new
file in 539filesystem as described and implemented in the function
create_file.

1 void update_base_block( int new_head, int new_tail )

2 {

3 base_block->head = new_head;

4 base_block->tail = new_tail;

5

6 write_disk( BASE_BLOCK_ADDRESS, base_block );

7 }

It’s too simple, it receives the value of head and tail that we would
like to set on the base block, then, the copy of the base block which is
stored in the main memory is updated, then, this updated version is
overwritten on the base block address on the disk. The following is
code of load_metadata which has been used in create_file function.

1 metadata_t *load_metadata( int address )

2 {

3 metadata_t *metadata = read_disk( address );

4

5 return metadata;

6 }

Simply, it receives a disk address and assumes that the block which
is presented by this address is a metadata block. It loads this metadata
to the main memory by loading the content of the address from the
disk through the device driver function read_disk. The following is
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Figure 33: Steps Needed to Create New File in 539filesystem When Run-time
Filesystem isn’t Empty
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a sample of using create_file to create a new file in the run-time
filesystem.

1 char *data = kalloc( 512 );

2

3 strcpy( data, "The content of the first file on 539filesystem" );

4

5 create_file( "first_file", data );

Listing All Files

To list all files on 539filesystem, the normal traversal algorithm of
linked-list can be used. In linked-list, to traverse all list’s item you
need to start with the head of the list, then to reach the second item of
the list, the “next” field of the head can be used, and so on for the rest
of items in the linked-list. The “next” field is the component which
links the items of the list with each other. You keep traversing the
items until the tail of the list is reached and you can check whether
the current item is the tail or not by checking its “next” field, in case
its value is 0 (or usually in higher-level implementations NULL) then
you know that the current item is the tail which means the list is over.
Another way to check if the current item is the tail is by comparing its
address with the one which is stored in the tail field of the linked-list,
in our case, the base block. The following is the code of the function
list_files which uses the algorithm we just described, it returns an
array of strings, each item of this array is a filename.

1 char **list_files()

2 {

3 // Part 1

4

5 if ( base_block->head == 0 )

6 return -1;

7

8 // Part 2

9

10 char **list;

11

12 list = kalloc( get_files_number() * sizeof( char * ) );

13

14 // Part 3

15

16 metadata_t *curr_file = load_metadata( base_block->head );

17

18 int idx = 0;

19

20 while ( 1 )

21 {
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22 list[ idx ] = curr_file->filename;

23

24 if ( curr_file->next_file_address == 0 )

25 break;

26

27 curr_file = load_metadata( curr_file->next_file_address );

28

29 idx++;

30 }

31

32 return list;

33 }

The first part of list_files handles the case where the run-time
filesystem is empty, so, it returns -1 to indicate that there is no files
to list. In case that the run-time filesystem isn’t empty, the func-
tion in the second part allocates a space in kernel’s heap for the list
of the filenames, as you can see, we have used a function named
get_files_number to decide how many bytes we are going to allocate
for this list, based on its name, this function returns the number of files
in the run-time filesystem, its code will be presented in a moment. In
the third part, the function is ready to traverse the list of files metadata
which are stored in the disk and are reachable starting from the disk
address which is stored in the head field in the base block.

Initially, the metadata of the head file is loaded into memory and
can be accessed through the local variable curr_file, then, the loop
is started. In the body of the loop, the filename of the current file
metadata is appended to the result’s variable list, in the first iteration
of this loop the filename will be the one that belong to the head file.
After appending the filename of the current file to list, the function
checks if the current file is the tail file or not by checking the value of
the “next” field next_file_address, if it is 0 then the current file is the
tail, so, the loop should break and the result should be returned to the
caller. In case that the current file isn’t the tail file, then the metadata
of the next file is loaded by using the disk address which is stored in
the “next” field of the current file, the current value of curr_file is
replaced with a memory address that points to the metadata of the
next file which will be used in the next iteration of the loop, the same
operation continues until the function reaches the tail which breaks
the loop and returns the list to the caller. The following is the code
of get_files_number that was used in list_files and, as mentioned
earlier, returns the number of stored files.

1 int get_files_number()

2 {

3 if ( base_block->head == 0 )

4 return 0;

5
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6 int files_number = 0;

7

8 // ... //

9

10 metadata_t *curr_file = load_metadata( base_block->head );

11

12 while ( 1 )

13 {

14 files_number++;

15

16 if ( curr_file->next_file_address == 0 )

17 break;

18

19 curr_file = load_metadata( curr_file->next_file_address );

20 }

21

22 return files_number;

23 }

As you can see, it works in a similar way as list_files, the main
difference is that get_files_number keep tracking the number of it-
erations to fetch the number of files instead of copying the filename
of the current file to another list. The following is a sample of using
list_files.

1 void print_fs()

2 {

3 char **files = list_files();

4

5 for ( int currIdx = 0; currIdx < get_files_number(); currIdx++ )

6 {

7 print( "File: " );

8 print( files[ currIdx ] );

9 println();

10 }

11

12 print( "==" );

13 println();

14 }

Reading a File

The function read_file reads the content of a file which its name is
passed as a parameter, then, the address of the buffer that stores that
content of the file is returned to the caller. Because the file size in
539filesystem is always 512 bytes then read_disk of ATA device driver
can be called just one time to load a file.
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To implement read_file, the main thing to do is to find the disk
address of the file that the caller passed its name as a parameter, after
knowing how to traverse the list of files in 539filesystem, we can easily
use this algorithm to find the disk address of a file given its name.
The following is the code of read_file.

1 char *read_file( char *filename )

2 {

3 int address = get_address_by_filename( filename );

4

5 if ( address == 0 )

6 return 0;

7

8 char *buffer = read_disk( address + 1 );

9

10 return buffer;

11 }

The task of finding the disk address of the file’s metadata is per-
formed by the function get_address_by_filename which we will
define in a moment. When the metadata of the file is not found,
read_file returns 0, otherwise, the file will be read by calling read_disk,
as you can see, the parameter that is passed to this function is address
+ 1 since the value of address is the disk address of the file’s metadata
and not its content. Finally, the address of the buffer is returned to the
caller. The following is the code of get_address_by_filename.

1 int get_address_by_filename( char *filename )

2 {

3 metadata_t *curr_file = load_metadata( base_block->head );

4 int curr_file_address = base_block->head;

5

6 int idx = 0;

7

8 while ( 1 )

9 {

10 if ( strcmp( curr_file->filename, filename ) == 1 )

11 return curr_file_address;

12

13 if ( curr_file->next_file_address == 0 )

14 break;

15

16 curr_file_address = curr_file->next_file_address;

17 curr_file = load_metadata( curr_file->next_file_address );

18 }

19

20 return 0;

21 }
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This function receives a filename as a parameter, then, it traverse
the list of the files, with each iteration, the name of the current file is
compared to the passed filename by using the function strcmp that
we already defined, if the name of the current file doesn’t match the
passed filename, the function loads the metadata of the next file by
using load_metadata and continues to the next iteration of the loop to
check whether the next file is the required file or not, and so on, if the
file isn’t found, then the loop exits and 0 is returned. When a match is
found, the disk address of the current file’s metadata which is stored
in the local variable curr_file_address is returned to the caller. The
following is a sample of using read_file.

1 print( read_file( "first_file" ) );

Deleting a File

As in creating a file, deleting a file may cause modifications on the
base block or even on another file’s metadata. Given a filename, the
function delete_file deletes this file from the run-time filesystem,
technically, the content of the file will not be overwritten with zeros
for example, instead, only the reference to this file is removed from
either the base block in case that file is the head, from another file’s
“next” field or both in case that is file is the tail.

As mentioned earlier, this design decision of not overwriting the
content of the file, that the user would like to delete, with zeros for
example on the disk is taken in real-world filesystems to make the
delete process faster and this decision made it possible for deleted files
recovery software to exist, this type of software can recover deleted
files since their contents are still on the disk but there is not reference
to them in the run-time filesystem’s data structure, however, the space
of deleted files are considered as free space by the filesystem and it
can be used anytime, that’s why the recovery software cannot ensure
you that it could recover all deleted files because the space which was
occupied by the deleted file (or part of it) may be now used by another
file. The following is the code of delete_file.

1 void delete_file( char *filename )

2 {

3 // Part 1

4

5 int curr_file_address = get_address_by_filename( filename );

6

7 if ( curr_file_address == 0 )

8 return;

9

10 metadata_t *curr_file_metadata = read_disk( curr_file_address );

11

12 // Part 2
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13

14 if ( get_files_number() == 1 )

15 {

16 update_base_block( 0, 0 );

17

18 return;

19 }

20

21 // Part 3

22 if ( curr_file_address == base_block->head )

23 {

24 update_base_block( curr_file_metadata->next_file_address,

base_block->tail );

25 }

26 // Part 4

27 else

28 {

29 int prev_file_address = get_prev_file_address(

curr_file_address );

30

31 metadata_t *prev_file = load_metadata( prev_file_address );

32

33 prev_file->next_file_address =

curr_file_metadata->next_file_address;

34

35 write_disk( prev_file_address, prev_file );

36

37 if ( curr_file_address == base_block->tail )

38 update_base_block( base_block->head, prev_file_address );

39 }

40 }

The first part tries to find the metadata address of the file in question
by using the function get_address_by_filename, in case the file is not
found, the function does nothing and returns. Otherwise, the metadata
of the file is loaded and the local variable curr_file_metadata is used
to point to that metadata in the main memory.

In the second part, the most basic case of deleting a file is handled,
when there is only one file in the run-time filesystem, nothing need to
be done but updating the base block to indicate that the disk address
of both head and tail is 0 which means, as mentioned earlier, that
the run-time filesystem is empty. The function update_base_block is
used to update the base block. Figure 34 shows this case.

The third part handles the case where the file to be deleted is the
head file, in this case, to remove the reference of this file, we simply
replace the current value of the head in base block with the metadata
address of the file right next to the head which can be found in the
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Figure 34: The State 539filesystem After Removing the Only File

Figure 35: The Steps Needed to Delete the Head File in 539filesystem

“next” field of the current head, so, the second file will become the
head file after finishing the delete process. Figure 35 shows this case.

The fourth part of the function handles the case where the file to
be deleted is not the head, in this case, the previous file’s metadata
needs to be found to modify its “next” field by replacing it with the
value of the “next” field of the file that we would like to delete, in
this way, we will be sure that the reference of the file to be deleted is
removed from 539filesystem data structure, and that the previous file
is linked with the next file. Figure 36 shows this case. Also, in this
case, the file in question may be the tail, therefore, the tail on the base
block should be replaced with the disk address of the previous file’s
metadata. Figure 37 shows this case.

As you can see in the first code line of this fourth part, a function
named get_prev_file_address is used to get the disk address of
previous file’s metadata to be able to perform the described operation.
By using this address, the metadata is loaded by using load_metadata

in order to modify the “next” field of the previous file, the updated
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Figure 36: The Steps Needed to Delete a File which is not the Head

Figure 37: The Steps Needed to Delete a File which is not the Head but it’s a
Tail in 539filesystem. The File to Delete Here is “W”.
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metadata is written on the same address in the disk. Finally, the
function checks if the file to be deleted is the tail file or not, if this is the
case, the tail in base block is updated to point to the previous file which
ensures that there is no any reference to that file in the filesystem’s
data structure. The following is the code of get_prev_file_address
which needs no more explanation.

1 int get_prev_file_address( int address )

2 {

3 metadata_t *prev_file = load_metadata( base_block->head );

4 int prev_file_address = base_block->head;

5

6 while ( 1 )

7 {

8 if ( prev_file->next_file_address == address )

9 return prev_file_address;

10

11 prev_file_address = prev_file->next_file_address;

12 prev_file = load_metadata( prev_file->next_file_address );

13 }

14

15 return -1;

16 }

6.4 finishing up version ne and testing the filesystem

And now version NE of 539kernel is ready. It contains a basic ATA
device driver and 539filesystem. The following is its Makefile which
adds the new files to the compilation list, also, this time we are going
to use Bochs instead of QEMU to test 539filesystem since kernel.img

which represents the hardisk is tailored for the former.

1 ASM = nasm

2 CC = gcc

3 BOOTSTRAP_FILE = bootstrap.asm

4 SIMPLE_KERNEL = simple_kernel.asm

5 INIT_KERNEL_FILES = starter.asm

6 KERNEL_FILES = main.c

7 KERNEL_FLAGS = -Wall -m32 -c -ffreestanding

-fno-asynchronous-unwind-tables -fno-pie

8 KERNEL_OBJECT = -o kernel.elf

9

10 build: $(BOOTSTRAP_FILE) $(KERNEL_FILE)

11 $(ASM) -f bin $(BOOTSTRAP_FILE) -o bootstrap.o

12 $(ASM) -f elf32 $(INIT_KERNEL_FILES) -o starter.o

13 $(CC) $(KERNEL_FLAGS) $(KERNEL_FILES) $(KERNEL_OBJECT)

14 $(CC) $(KERNEL_FLAGS) screen.c -o screen.elf
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15 $(CC) $(KERNEL_FLAGS) process.c -o process.elf

16 $(CC) $(KERNEL_FLAGS) scheduler.c -o scheduler.elf

17 $(CC) $(KERNEL_FLAGS) heap.c -o heap.elf

18 $(CC) $(KERNEL_FLAGS) paging.c -o paging.elf

19 $(CC) $(KERNEL_FLAGS) ata.c -o ata.elf

20 $(CC) $(KERNEL_FLAGS) str.c -o str.elf

21 $(CC) $(KERNEL_FLAGS) filesystem.c -o filesystem.elf

22 ld -melf_i386 -Tlinker.ld starter.o kernel.elf screen.elf

process.elf scheduler.elf heap.elf paging.elf ata.elf str.elf

filesystem.elf -o 539kernel.elf

23 objcopy -O binary 539kernel.elf 539kernel.bin

24 dd if=bootstrap.o of=kernel.img

25 dd seek=1 conv=sync if=539kernel.bin of=kernel.img bs=512 count=20

26 dd seek=21 conv=sync if=/dev/zero of=kernel.img bs=512 count=2046

27 bochs -f bochs

To run Bochs, it should be configured properly. As you can see from
the presented Makefile, a file named bochs is passed to Bochs to use it
as a configuration file, so, by using it we don’t need to configure Bochs
everytime we use it to run 539kernel. The following is the content of
bochs file which should reside in the same directory of 539kernel’s
code.

1 plugin_ctrl: unmapped=1, biosdev=1, speaker=1, extfpuirq=1, parallel=1,

serial=1, gameport=1, iodebug=1

2 config_interface: textconfig

3 display_library: x, options="gui_debug"

4 memory: host=32, guest=32

5 romimage: file="/usr/share/bochs/BIOS-bochs-latest"

6 vgaromimage: file="/usr/share/bochs/VGABIOS-lgpl-latest"

7 boot: disk

8 ata0: enabled=1, ioaddr1=0x1f0, ioaddr2=0x3f0, irq=14

9 ata0-master: type=disk, mode=flat, translation=auto, path="kernel.img",

cylinders=2, heads=16, spt=63, biosdetect=auto, model="Generic

1234"

10 pci: enabled=1, chipset=i440fx

11 vga: extension=vbe, update_freq=5

12 cpu: count=1, ips=4000000, model=bx_generic, reset_on_triple_fault=1,

cpuid_limit_winnt=0, ignore_bad_msrs=1, mwait_is_nop=0

13 cpuid: family=6, model=0x03, stepping=3, mmx=1, apic=xapic, sse=sse2,

sse4a=0, sep=1, aes=0, xsave=0, xsaveopt=0, movbe=0, adx=0,

smep=0, avx=0, avx_f16c=0, avx_fma=0, bmi=0, xop=0, tbm=0, fma4=0,

vmx=1, x86_64=1, 1g_pages=0, pcid=0, fsgsbase=0, mwait=1

14 cpuid: vendor_string="GenuineIntel"

15 cpuid: brand_string=" Intel(R) Pentium(R) 4 CPU "

As you can see, it tells Bochs the specifications of the virtual ma-
chine we would like to run, also, the file which represents the hard
disk kernel.img is passed to Bochs here. The following code can be
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used to test 539filesystem. It should be inside kernel_main after the
initializations and processes creations.

1 char *data = kalloc( 512 );

2 strcpy( data, "The content of the first file on 539filesystem" );

3 create_file( "first_file", data );

4

5 // ... //

6

7 char *data2 = kalloc( 512 );

8 strcpy( data2, "SECOND FILE in 539filesystem" );

9 create_file( "second_file", data2 );

10

11 // ... //

12

13 char *data3 = kalloc( 512 );

14 strcpy( data3, "THIRD FILE in 539filesystem" );

15 create_file( "third_file", data3 );

16

17 // ... //

18

19 print( read_file( "first_file" ) ); println();

20 print( read_file( "second_file" ) ); println();

21 print( read_file( "third_file" ) ); println();

22

23 // ... //

24

25 print_fs();

26 delete_file( "first_file" );

27 print_fs();

This code creates three files, prints their contents, prints the run-
time filesystem tree through the function print_fs and finally deletes
the file first_file then prints the run-time filesystem tree again
to show that the file has been deleted successfully. The function
print_fs already defined in this chapter. To make everything works
file, you need to keep the definition of print_fs below kernel_main

and put the prototype void print_fs(); above kernel_main. Also,
to test the filesystem you need to make sure that the interrupts are
disabled, the easiest way to do that is modifying starter.asm by
commenting the line sti which is before call kernel_main in the
routine start_kernel. After that you should see the result of the
above testing code after the kernel boots up.
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C H A P T E R 7 : W H AT ’ S N E X T ?

7.1 introduction

And now, after writing a simple operating system’s kernel and learn-
ing the basics of creating kernels, the question is “What’s Next?”.
Obviously, there is a lot to do after creating 539kernel and the most
straightforward answers for our question are the basic well-known
answers, such as: implementing virtual memory, enabling user-space
environment, providing graphical user interface or porting the kernel
to another architecture (e.g. ARM architecture). This list is a short list
of what you can do next with your kernel.

Previously, I’ve introduced the term kernelist 1 in which I mean
the person who works on designing operating system kernels with
modern innovative solutions to solve real-world problem. You can
continue with your hobby kernel and implement the well-known
concepts of traditional operating systems that we have just mentioned
a little of them, but if you want to create something that can be more
useful and special than a traditional kernel, then I think you should
consider playing the role of a kernelist.

If you take a quick look on current hobby or even production
operating system kernels through GitHub for example, you will find
most of them are traditional, that is, they focus on implementing
the traditional ideas that are well-known in operating systems world,
some of those kernels go further and try to emulate another previous
operating system, for example, many of them are Unix-like kernel, that
is, they try to emulate Unix. Another examples are ReactOS2 which
tries to emulate Microsoft Windows and Haiku3 which tries to emulate
BeOS which is a discontinued proprietary operating system. Trying
to emulate another operating systems is good and has advantages
of course, but what I’m trying to say that there are a lot of projects
that focus on this line of operating systems development, that is, the
traditionalists line and I think the line of kernelists needs to be focused
on in order to produce more innovate operating systems.

1 In chapter 3 where the distinction between a kernelist and a traditionalist has been
established.

2 https://reactos.org/

3 https://www.haiku-os.org/
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I’ve already said that the kernelist doesn’t need to propose her
own solutions for the problems that she would like to solve. Instead
of using the old well-known solutions, a kernelist searches for other
better solutions for the given problem and designs an operating system
kernel that uses these solutions. Scientific papers (papers for short) are
the best place to find novel and innovative ideas that solve real-world
problem, most probably, these ideas haven’t been implemented or
adopted by others yet4.

In this chapter, I’ve chosen a bunch of scientific papers that propose
new solutions for real-world problem and I’ll show you a high-level
overview of these solutions and my goal is to encourage interested
people to start looking to the scientific papers and implement their
solutions to be used in the real-world. Also, I would like to show how
the researches on operating systems field (or simply the kernelists!)
innovate clever solutions and get over the challenges, this could help
an interested person in learning how to overcome his own challenges
and propose innovate solutions for the problem that he faces.

Of course, the ideas on the papers that we are going to discuss
(or even the other operating system’s papers) may need more than
a simple kernel such as 539kernel to be implemented. For example,
some ideas may need a networking stack being available in the kernel,
which is not available in 539kernel, so, there will be two options in
this case, either you implement the networking stack in your kernel
or you can simply focus on the problem and solution that the paper
present and use an already exist operating system kernel which has
the required feature to develop the solution upon this chosen kernel,
of course, there are many open source options and one of them is
HelenOS5 microkernel6.

A small note should be mentioned, this chapter only shows an
overview of each paper which means if you are really interesting on
the problem and the solution that a given paper represents, then it’s
better to read it. It is easy to get a copy of any mentioned paper in
this chapter, you just need to search for its title in Google Scholar
(https://scholar.google.com/) and a link to a PDF will show for
you. However, before getting started in discussing the chosen papers,
I would like in the next subsection to discuss a topic that I’ve deferred
till this point, this topic is related to the architecture design of a kernel.

7.1.1 The Design of Kernel’s Architecture: Monolithic vs. Microkernel

The architecture of an operating system, as in any other software,
can be designed in many different ways and the most commonly

4 Scientific papers can be searched for through a dedicated search engine, for example,
Google Scholar.

5 http://www.helenos.org/

6 The concept of microkernel will be explained in this chapter.

https://scholar.google.com/
http://www.helenos.org/
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known kernel’s architecture are monolithic and microkernel. When the
monolithic architecture is used in a kernel, the whole code of the kernel
runs in the kernel-mode, that is, all the code of the kernel (hence, all its
different modules) has the same privileges to perform any operation
and to change anything in the system, even the device drivers. A
notable example of monolithic kernels is Linux, also, the modern
BSD family (FreeBSD, NetBSD and OpenBSD) uses the monolithic
architecture, the original Unix itself used a monolithic kernel. As you
may notice, 539kernel is also a monolithic kernel.

The other well-known design is microkernel, where not every com-
ponent of an operating system kernel is run as a privileged code (in
kernel-mode), instead, only the code that really needs to perform
privileged instructions. The other parts of the kernel that doesn’t need
to perform privileged instructions are separated from the microkernel
and run in the user-mode as any other user application and they
are known as servers in microkernel architecture. The goal of those
servers is providing an interface that represents the kernel services for
the user applications, and when a privileged instructions needed to
be performed, the server communicates with the microkernel which
runs in kernel-mode to do so. For example, when a user process
needs to create a new process, it needs to communicate with processes
server which runs in user-mode and request from it to create a new
process. The processes server maintains the processes list and their
process control block since these data structures don’t need to be in
the kernel-mode or kernel’s address space, so, when a process creation
request arrives, the creation of the new entry for the new process will
be the responsibility of the processes server with no need to run any
privileged code, once a privileged code is needed, the microkernel
will be called by the server.

Let’s take process management module of 539kernel as exam-
ple. This module provides one function which is process_create

in process.c, if you read the code of this module you will see there is
no any part of it needs to run in kernel-mode. That means, if 539kernel
was a microkernel, this whole module can run as a userspace server
instead of being in the kernel itself. Another example from 539kernel
is the scheduler, you can see for example in the function scheduler

(scheduler.c) that there is no need to run it in the kernel-mode, so, if
539kernel was a microkernel, this module can be run as a separated
userspace server instead. If you review the code of scheduler care-
fully, you can see that it needs to reach the processes list and also
needs to modify the processes control block, that’s mean the scheduler
server needs to communicate with processes server to perform these
operations. In microkernels this can be done through message passing,
for example, the scheduler server can send a message to the processes
server to get the ready processes list or to change some attribute in a
process control block and so on, the same is applicable between the
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other servers. The function run_next_process in scheduler.c is an
example from 539kernel’s scheduler module that needs to run as priv-
ileged code, so, if 539kernel was a microkernel this function should
reside in the kernel itself and not in the scheduler server. Another
example of 539kernel that should be in the kernel itself instead of the
server is the interrupt handler isr_32 in idt.asm.

The goal of microkernel design is keeping the code that needs to
run as privileged code as small as possible and move all the other
code to the userspace. This can make the kernel itself more secure,
reliable and easier to debug. Microkernels have a long history of re-
search to improve its performance and make it better, there are many
microkernels available nowadays, for example, L4, Mach which has
been used in NeXTSTEP operating system that the current macOS
based on 7, Minix, HelenOS and Zircon which is the kernel of Fuchsia
operating system and maybe one of the famous microkernel’s related
stuff is a debate known as Tanenbaum–Torvalds debate between Andrew
S. Tanenbaum (the creator of Minix and the author of the book “Oper-
ating Systems: Design and Implementation”) and Linus Torvalds (the
creator of Linux) in 1992 after few months Linux kernel release8.

7.2 in-process isolation

In current operating systems, any part of a process can read from
and write to any place of the same process’ memory. Consider a
web browser which like any other application consists of a number
of different modules (in the perspective of programmers) and each
one of them handles different functionality, rendering engine is one
example of web browser’s module which is responsible for parsing
HTML and drawing the components of the page in front of the user.
When an application is represented as a process, there will be no such
distinction in the kernel’s perspective, all application’s modules are
considered as one code that each part of it has the permission to do
anything that any other code of the same process can do.

For example, in web browser, the module that stores the list of web
pages that you are visiting right now is able to access the data that is
stored by the module which handles your credit card number when
you issue an online payment. As you can see, the first module is much
less critical than the second one and unfortunately if an attacker can
somehow hack the first module through an exploitable security bug,
she will be able to read the data of the second module, that is, your
credit card information and nothing is going to stop her.

7 Though, macOS’ kernel is considered as a hybrid kernel and not a microkernel.
8 The title of the post which started the debate was “LINUX is obsolete” by Andrew

Tanenbaum. The text of the debate is available online here: https://www.oreilly.
com/openbook/opensources/book/appa.html

https://www.oreilly.com/openbook/opensources/book/appa.html
https://www.oreilly.com/openbook/opensources/book/appa.html
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This happens due to the lack of in-process isolation in the current
operating systems, that is, both sensitive and insensitive data of the
same process are stored in the same address space and any part of
the process code is permitted to access all these data, so, there is no
difference in your web browser’s process between the memory region
which stores that titles of the pages and the region which stores you
credit card information. A severe security bug known as HeartBleed
vulnerability showed up due to the lack of in-process isolation. Next,
two of the solutions for the problem of data isolation that has been
proposed by kernelists will be discussed.

7.2.1 Lord of x86 Rings

A paper named “Lord of the x86 Rings: A Portable User Mode
Privilege Separation Architecture on x86” 9 proposes an architecture
(named LOTRx86 for short) which provides an in-process isolation,
the paper uses the term user-mode privilege separation which has the
same meaning. LOTRx86 doesn’t use the new features of the mod-
ern processors to implement the in-process isolation, Intel’s Software
Guard Extensions (SGX) is an example of these features. The reason of
not using such modern feature in LOTRx86 is portability, while SGX is
supported in Intel’s processors, it is not in AMD’s processors10 which
means that employing this feature will make our kernel only works
on Intel’s processor and not AMD’s. Beside that, SGX is a relatively
new technology11 which means even older Intel’s processors don’t
support it and that makes our kernel less portable and can only run
on specific types of Intel’s processors. So, if we would like to provide
in-process isolation in our kernel, but at the same time, we want it to
work on both Intel’s and AMD’s processors, that is, portable 12, what
should we do? According to LOTRx86, we use privilege levels to do
that.

Throughout this book, we have encountered x86 privilege levels
and we know from our previous discussions that modern operating
systems only use the most privileged level 0 as kernel-mode and the
least privileged level 3 as user-mode. In LOTRx86 a new area in each
process called PrivUser is introduced, this area keeps the sensitive data
of the process and it’s only accessible through special code that runs on
the privilege level 2, so, in a kernel which employs LOTRx86 a process

9 Authored by Hojoon Lee, Chihyun Song and Brent Byunghoon Kang. Published on
2018.

10 Beside Intel, also AMD provides processors that use x86 architecture.
11 Intel’s SGX is deprecated in Intel Core but still available on Intel Xeon.
12 In LOTRx86 when the term portable is used to describe something it means that this

thing is able to work on any modern x86 processor. The same term has another
boarder meaning, for example, if we use the boarder meaning to say “Linux kernel
is portable” we mean that it works on multiple processors architecture such as x86,
ARM and a lot more and not only on Intel’s or AMD’s x86.
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may run in privilege level 3 (user-mode), as in modern operating
systems, and may run in privilege level 2 (PrivUser). Most of the
normal work of a process will be done in level 3, but when the code
is related to sensitive data, such as storing, accessing or processing
them, the process will run on level 2. Of course, the sensitive data
cannot be accessed by process’ normal code since the latter runs on
level 3 and the former needs a code that runs on privilege level 2 to
be accessed. If an attacker exploit a vulnerability that allows him to
read the memory of the process, he will not be able to read the secret
data if this vulnerability is on the normal code of the process.

A kernel with LOTRx86 should provide a way for the programmers
to use the feature provided by LOTRx86, so, the authors of the paper
propose a programming interface named privcall which works like
Linux kernel’s system calls. Through this interface an application
programmer can write functions (routines) that process the secret
data, these functions will run on privilege level 2 and will be stored
in PrivUser, we will call these functions as secret functions in our
coming discussion. When the normal code of the process need to do
something with some secret data that is stored in PrivUser a specific
secret function can be called through privcall interface, once this
call is issued, the current privilege level will be changed from 3 (user-
mode) to 2 (PrivUser13) by using x86 call gates. Note that this solution
mitigates vulnerabilities like HeartBleed but doesn’t prevent them
necessarily.

To implement this architecture, two requirements should be satisfied
in order to reach the goal. The first requirement is called M-SR1 in the
paper and it states that the PrivUser area should be protected from
the normal user mode which most of the application’s code run on.
The second requirement is called M-SR2 in the paper and it states that
the kernel should be protected from PrivUser code.

To satisfy the first requirement, the pages of PrivUser are marked
as privileged pages in their page entry 14, that is, the code that run on
privilege level 3 cannot access them while the code that runs on levels
0, 1 and 2 can. To satisfy the second requirement, the authors propose
to use segmentation, LDT table is employed to divided each process
into segments and a special segment for the secret functions and data,
that is, PrivUser is defined and the definition of this segment indicates
that the secret functions can only access the secret data under privilege
level 2 in order to protect the kernel’s data which reside in privilege
level 0.

This was the high-level description of LOTRx86 solution, there are
some challenges that have been faced by the authors and the details
of them and how they overcame them can be found in the paper,

13 In the paper, the name PrivUser means two things, the execution mode and the secret
memory area.

14 We have discussed this bit in a page entry in chapter 4.
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so, if you are interested on implementing LOTRx86 in your kernel, I
encourage you to read the original paper which also discusses how
the authors managed to implement their solution in Linux kernel as
kernel modules, also, the paper shows the performance evaluation of
their implementation. There is something to note, the authors assume
that the solution is implemented in 64-bit environment instead of
32-bit and due to that they faced some challenges that the may not
be faced in 32-bit environment.

Of course LOTRx86 is not the only proposed solution for our prob-
lem, there are a bunch more and some of them are mentioned on
the same paper that we are discussing. What makes LOTRx86 differs
from them is the focus on a solution that has a better performance
and portable as we have examined in the beginning of this subsection.

As you saw in this solution how the authors played the role of a
kernelist, they proposed a solution for real-world problem, they used
some hardware feature that is usually used in a different way in the
traditional operating systems (privilege level 2) and they proposed a
different and useful idea for operating system kernels.

7.2.2 Endokernel

The proposed solution In LOTRx86 paper isolates the memory within
the process but what about the other system resources (e.g. files)? For
example, what if a critical module in the process needs to read and
write on a secret file while the other modules of the same process
should not reach this file at all. The only system resource that LOTRx86

protects is the memory while the other resources of the system are
accessible by any module within the process.

The paper “The Endokernel: Fast, Secure, and Programmable Sub-
process Virtualization” 15 proposes a solution to handle this case by
modifying the traditional process model which used by most modern
operating systems. In Endokernel Architecture a monitor is attached
within each process. This monitor, which is called endokernel, isolates
itself from the untrusted parts of the process and also provides a
lightweight virtual machine, called endoprocess, to the rest of the
process and through defined polices the isolation can be enforced,
for example, some processor’s instructions can be permitted to be
executed by the untrusted parts of the process without monitoring
but some other can be defined that the should be monitored. Also, the
filesystem’s operations that are allowed to be used can be defined by
the policies and the endokernel is going to ensure that these policies
are enforced.

15 Authored by: Bumjin Im, Fangfei Yang, Chia-Che Tsai, Michael LeMay, Anjo Vahldiek-
Oberwagner and Nathan Dautenhahn. Published on 2021.
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7.3 nested kernel

In monolithic design, the kernel is considered as one entity and each
component of the kernel is able to read/modify the data and maybe
the code of another component since the whole of the kernel’s code
works on kernel mode. Beside the standard components of the kernel
(e.g. process management and memory management), usually, the
device drivers are considered as a part of the monolithic kernel and
they run on the kernel mode, these device drivers are, most probably,
written by a third party entity which makes them considered as an
untrusted code, also, they may be buggy if they are compared to
the standard code of the kernel. Any exploitable bug in any part of
a monolithic kernel (either in a device driver or not) will give the
attacker the access to the whole kernel. This problem reminds us with
the problem which has been presented earlier in this chapter but this
time the kernel is the one which suffers from it.

Microkernel design solves this problem by separating the most
components of the kernel as user-space servers, but what if we would
like to keep the monolithic design and have this kind of separation?
This is what a paper titled “Nested Kernel: An Operating System
Architecture for Intra-Kernel Privilege Separation” 16 is trying to do
by proposing a new kernel’s design called nested kernel.

Memory is the root of all evil, that’s what I feel this paper is trying
to tell us. In nested kernel design, the operating system kernel is
divided into two parts, the first one is nested kernel and the second
part is outer kernel. The nested kernel is isolated from the outer kernel
and both parts run on kernel mode. The job of nested kernel is to
isolate the memory management unit (MMU) from the outer kernel.
To make the outer kernel able to use the functionality that MMU
provides, the nested kernel exposes and controls an interface of the
MMU, this interface is called virtual MMU (vMMU) in the paper, so, if
any part of the outer kernel needs to manipulate the state of MMU
then vMMU interface can be used. The nested kernel part has small
and trusted code while the outer kernel contains all other code that
cannot be trusted (e.g. device drivers) or may be buggy. When we say
isolating MMU we mean that the data structures and registers that
build the state of MMU are isolated, so, in x86 for example, isolating
MMU means isolating page directory, page tables and the control
registers that are related to paging.

The memory regions which a kernel implementer would like to
protect from being modified by the outer kernel (protected memory)
are marked as read-only region in nested kernel design and only the
nested kernel has the permission to modify them. For example, say
that you have decided to protect the memory that contains the code of

16 Authored by Nathan Dautenhahn, Theodoros Kasampalis, Will Dietz, John Criswell
and Vikram Adve. Published on 2015.
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the kernel which checks if the current user has the permissions to read
or modify a specific file, this region can by marked as read-only and
can be protected by the nested kernel all the time from being modified
by any part of the outer kernel. Now, assume that an attacker found
an exploitable security bug in one of the device drivers, and his goal
is to modify that code of permission checking in order to let him to
read some critical file, this cannot be done since the memory region
is protected and read-only, the paper discusses how in details how to
ensure that the outer kernel doesn’t violate the protection of nested
kernel in x86 architecture.

That’s not the whole story. Making the nested kernel the only
way to modify the protected memory by the outer kernel means that
the nested kernel can be a mediator which will be called before any
modification performed. This will let the kernel’s implementer to
define security policies and enforce them while the system is running.
For example, the authors propose no write policy which doesn’t let
the outer kernel to write on a specific memory region at all (e.g. the
example of checking permissions code). Another proposed policy is
write-once policy which lets the outer kernel to write to a region of
memory just one time, this policy will be useful with the memory
region that contains the IDT table for example, so, the attacker cannot
modify the interrupt service routines after setting them up by the
trusted code of outer kernel. More policies were presented in the
paper. You can see here how the kernelists proposed a new kernel
design other than the popular ones (microkernel and monolithic) in
order to solve a specific real-world problem.

7.4 multikernel

The paper “The Multikernel: A new OS architecture for scalable mul-
ticore systems” 17 shows a good example of kernelists who get rid of
the old designs completely in order to provide a modern one which
is more suitable for current days. In the paper, the authors have ob-
served the new trends in the modern hardware, these trends motivated
them to propose a new kernel architecture named multikernel. One
of these observations is the diversity of the new systems, according
to the authors, the operating systems in the new systems need to
work with machines that may have cores with different instruction set
architectures, that is, they have heterogeneous cores, either in term of
instruction set architecture or performance. Another observation is
that the message passing is now easier in the modern hardware and
can be used instead of shared memory in order to share information
between two processes for example, the idea of multikernel aims to

17 Authored By: Andrew Baumann, Paul Barham, Pierre-Evariste Dagand, Tim Harris,
Rebecca Isaacs, Simon Peter, Timothy Roscoe, Adrian Schüpbach and Akhilesh
Singhania. Published in 2009.
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handle these observations and provide an architecture of a kernel that
is suitable for the modern multicore systems.

In multikernel architecture, a multicore system is handled as a
network of cores, as if each core is a separate processor, and the
communications between the cores are performed through message
passing, it is not necessary that the cores belong to the same machine.
When the cores are handled as a network of machines, the algorithms
and techniques of distributed systems can be used.

The design of multikernel depends on three principles. First, all com-
munications between the cores in the kernel should be explicit through
message passing and no implicit communications (e.g. through shared
memory) is allowed, one of the benefits of this principle is the ability
to use well-known networking optimizations in order to make the
communications between cores more efficient. Also, making the com-
munication explicit can help in reasoning about the correctness of the
kernel’s code. The second principle is separating the structure of the
operating system as much as possible from the hardware, that is, the
structure should be hardware neutral. The benefits of this principle are
obvious and one of them is making the adaptation of processor’s spe-
cific optimization easier 18. The last principle is dealing with the state
of the operating system (e.g. processes table) as replicated instead of
shared, that is, when a core need to deal with a global data structure, a
copy of this data structure is sent to this core instead of using just one
copy by all the cores in the system. Based on these design principles,
the authors built an implementation called Barrelfish, according to
the authors, this implementation is an example of multikernel but not
the only way to build one. The paper discusses in details how they
designed Barrelfish to realize multikernel’s design principles and how
they overcame the challenges that the have faced.

7.5 dynamic reconfiguration

Changing a specific module while the system is running can be an
important aspect in some systems, for most desktop users, when
some module of a system is changed, due to updating the system for
example, it will be fine to reboot the system to get the new changes
applied, but what about a server that needs to run all the time with
no downtime, rebooting it is not an option. Current operating systems
still require a reboot when an update to specific parts is performed,
for example, updating Linux kernel in a running system requires a
reboot to this system to be able to use the new version of the kernel.

Dynamic reconfiguration is the process of changing a specific mod-
ule of the system while keeping it running without the need of reboot-
ing it, that’s how a paper titled “Building reconfigurable component-

18 The paper mentioned that applying one of optimizations on Windows 7 caused
changes in 6,000 lines of code through 58 files.
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based OS with THINK” 19 defines this term. According to the paper,
dynamic reconfiguration consists of the followings steps: First, the part
that we would like to reconfigure (the reconfiguration target) should
be identified and separated from other parts, to do that, THINK frame-
work uses a component model called Fractal 20 in order to identify
each part of the system as a separated component, after that, the
process of reconfiguration is going to deal with these components, for
example, in 539kernel the process management part, the scheduler,
the memory management part, the allocator and the filesystem can be
defined as separated components, as you can see each of these part
has its own functionality and can be encapsulated, by using dynamic
reconfiguration we can for example change the current scheduler with
another one while the system is running.

The second step is to make sure that the reconfiguration target is on
the safe state, that is, there is no other part that is using the target right
now, thread counting is one technique that has been proposed in the
paper to detect safe state, when employing this technique any call to a
component causes the thread counter to increase by 1 and when this
call finishes the thread counter decreases by 1, a component is on the
safe state when the thread counter is 0, that is, no thread (or process)
is currently using the target component. After the target component
reaches the safe state it can be changed to the new component, the
context of the target should be moved to the new component and after
that the execution of the component can be resumed.

7.6 unikernel

Virtualization is widely used today and cloud computing is an obvious
example of employing virtualization technologies. Nowadays, you can
easily start and stop virtual machines that run a commodity operating
system (e.g. Linux or Windows) and via this virtual machine you
can run whatever software you wish as if this virtual machine is a
real one. There are many cases where a virtual machine is used to
provide just one thing, for example, a virtual machine that runs a web
server solely. To do that, of course an operating system is needed
to be installed in the virtual machine, say for example Linux, and of
course a web server should be installed on top this operating system,
say Apache. Linux (and modern general purpose operating systems)
is a multiprocess and multiuser kernel which contains a lot of code
that handle the protection of the processes, the users and the kernel
itself (via the separation of kernel-mode and user-mode as we have
discussed through this book), beside that, there are a lot of services

19 Authored by: Juraj Polakovic, Ali Erdem Özcan and Jean-Bernard Stefani. Published
on 2006

20 https://fractal.ow2.io/

https://fractal.ow2.io/
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that are provided in general purpose operating systems so they can
be suitable for all users.

In our example of the virtual machine which only runs a web server
all of these services are not needed, they can be omitted and only
the services that are needed by the web server are kept, this is what
unikernels do. In this model of kernels design, everything that is not
needed is omitted, even the separation between the kernel and the
user application (in our example the web server) and let both of them
to run in a single address space. All of these changes on the kernel’s
architecture provide us with many benefits, the size of the kernel and
the final binary will be smaller, it will have a better performance 21, it
will boot faster and the attack surface will be smaller.

I think unikernel is a good path to start your journey as a kernelist,
especially that this topic is gaining a momentum these days. The
idea behind a unikernel is simple, a skeleton of an operating system’s
kernel which targets a specific architecture (e.g. x86) is provided to
the user with specific services (e.g. functions and so on) to make
it easy for the user to write his own application, in this stage, the
combination of the kernel and those provided services is known as a
library operating system, after writing the application, say a web server,
both the application and the kernel are built as one entity which is
the unikernel that is going to run on a virtual machine and provide a
specific service.

There are many library operating systems available, for example: In-
cludeOS 22 which its design is presented in a paper titled “IncludeOS:
A minimal, resource efficient unikernel for cloud services” 23, Unikraft
24 which its design is presented in a paper titled “Unikraft: Fast, Spe-
cialized Unikernels the Easy Way” 25, OSv 26 and MirageOS 27. Also,
there are many new scientific papers that try to find solutions for
unikernel problems and advance the area. For example, the paper
“Towards a Practical Ecosystem of Specialized OS Kernels” 28 proposes
a way to build an ecosystem for library operating systems which helps
the user to find a kernel that fits his needs and helps in building
the last result of the user’s application. Another paper is titled “A

21 In the website of a unikernel called Unikraft the following is stated: “On Unikraft,
NGINX is 166% faster than on Linux and 182% faster than on Docker”.

22 https://www.includeos.org/

23 Authored by Alfred Bratterud, Alf-Andre Walla, Harek Haugerud, Paal E. Engelstad
and Kyrre Begnum. Published on 2015.

24 https://unikraft.org/

25 Authored by Simon Kuenzer, Vlad-Andrei Bădoiu, Hugo Lefeuvre, Sharan Santhanam,
Alexander Jung, Gaulthier Gain, Cyril Soldani, Costin Lupu, Stefan Teodorescu, Costi
Răducanu, Cristian Banu, Laurent Mathy, Răzvan Deaconescu, Costin Raiciu and
Felipe Huici. Published on 2021.

26 https://osv.io/

27 https://mirage.io/

28 Authored by Conghao Liu and Kyle C. Hale. Published on 2019.

https://www.includeos.org/
https://unikraft.org/
https://osv.io/
https://mirage.io/


7.6 unikernel 214

Binary-Compatible Unikernel” 29 which proposes a unikernel named
HermiTux 30 that provides binary compatibility with Linux applica-
tions, that is, instead of writing a wholly new application to be used
as a unikernel, with binary compatibility one of mature applications
that already exists for Linux can be used instead, for example, running
Apache web server a unikernel instead of writing a wholly new web
server is most probably better idea.

Of course, there are a lot more papers either about unikernels or
any other operating system topics, just search for them and you will
find a lot. I hope you a happy kernelist/traditionalist journey and
thanks for reading this book!

29 Authored by Pierre Olivier, Daniel Chiba, Stefan Lankes, Changwoo Min and Binoy
Ravindran. Published on 2019

30 https://ssrg-vt.github.io/hermitux/

https://ssrg-vt.github.io/hermitux/
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